Cho một số có hai chữ số có dạng ab .Chứng tỏ rằng ab+ba chia hết a+b
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho một số có 2 chữ số : a là chữ số hàng chục b là chữ số hàng đơn vị số được viết dưới dạng ab. Giả sử a > b
A) em hãy chứng tỏ rằng ( ab - ba ) luôn chia hết cho 9.
B) chứng tỏ rằng (ab + ba ) luôn luôn chia hết cho 11
Số b a là là số viết ngược của số ab
a) Ta có : ab - ba = (a0 + b) - (b0 + a)
= (10 x a + b) - (10 x b + a)
= (10 x a - a) - (10 x b - b)
= 9 x a - 9 x b
= 9 x (a - b) \(⋮\)9
=> (ab - ba) \(⋮\)9 (đpcm)
b) Ta có : ab + ba = a0 + b + b0 + a
= 10 x a + b + b x 10 + a
= (10 x a + a) + (10 x b + b)
= 11 x a + 11 x b
= 11 x (a + b) \(⋮\)11
=> (ab + ba) \(⋮\)11 (đpcm)
A ) giả sử a > b 1 đơn vị ab - ba = 9 => có thể chia hết cho 9
VD : 32 - 23 = 9 ; 9 : 9 = 1
B ) vì ab + ba = số có 2 chữ số giống nhau mà giống nhau thì luôn chia hết cho 11
VD : 21 + 12 = 33 ; 33: 11 = 3
cho một số có 2 chữ số có dạng ab.Chứng tỏ rằng ab+ba chia hết cho tổng (a+b)
Ta có ab + ba
= 10a + b +10b + a
= 10(a+b) + (a+b) chia hết cho (a+b)
Ta có : \(ab+ba\)
\(=10a+b+10b+a\)
\(=10\left(a+b\right)+\left(a+b\right)⋮\left(a+b\right)\)
\(\Leftrightarrow ab+ba⋮\left(a+b\right)\)
Vậy..........
Cho một số có hai chữ số: a là chữ số hàng chục và b là chữ số hàng đơn vị, số này viết là a b ¯ . Giả sử a > b
a) Em hãy chứng tỏ rằng hiệu ( a b ¯ - b a ¯ ) luôn luôn chia hết cho 9.
Cho 2 số có 2 chữ số: a là chữ số hàng chục và b là chữ số hàng đơn vị, sẽ được viết là ab. Giả sử a>b
a, em hãy chứng tỏ rằng hiệu ( ab - ba ) luôn luôn chia hết cho 9.
c, chứng tỏ rằng tổng ( ab + ba ) luôn luôn chia hết cho 11. Số ba la số viết ngược lại của số ab
Cho 2 số có 2 chữ số: a là chữ số hàng chục và b là chữ số hàng đơn vị, sẽ được viết là ab. Giả sử a>b
a, em hãy chứng tỏ rằng hiệu ( ab - ba ) luôn luôn chia hết cho 9.
c, chứng tỏ rằng tổng ( ab + ba ) luôn luôn chia hết cho 11. Số ba la số viết ngược lại của số ab.
c, Ta có ab+ba = 10a + 10b + a + b=11a + 11b
Vậy ab+ba chia hết cho 11
Cho 1 số có 2 chữ số có dạng ab
a. Chứng minh rằng tổng ab + ba thì chia hết cho tổng a + b
b. Chứng minh rằng hiệu ab - ba thì chia hết cho hiệu a - b, với a>b
a) ab + ba
= 10a + b + 10b + a
= 11a + 11b = 11(a+b)
Chia hết cho a + b
a) ab + ba
= 10a + b + 10b + a
= 11a + 11b = 11(a+b)
Chia hết cho a + b
a)ab+ba
=10a+b+10b+a
=11a+11b=11(a+b)
chai hết cho a+b
cho một số có hai chữ số: a là chữ số hàng chục và b là chữ số hàng đơn vị sẽ được viết ab. giả sử a bé hơn b
a. Em hãy chứng tỏ rằng hiệu ( ab-ba) luôn luôn chia hết cho 9
b. Chứng tỏ rằng tổng (ab+ba) luôn luôn chia hết cho 11.Số ba là số viết ngược lại của ab
b. Ta có :
ab+ba =a0+b +b0 + a=(a0 + a) + (b0 + b) = aa + bb chia hết cho 11
Cho một số có 2 chữ số: a là chữ số hàng chục và b là chữ số hàng đơn vị, số được viết là a b ¯ . Giả sử a > b
b) Chứng tỏ rằng tổng ( a b ¯ + b a ¯ ) luôn luôn chia hết cho 11. Số b a ¯ là số viết ngược lại của số a b ¯ .
Cho 2 số có 2 chữ số: a là chữ số hàng chục và b là chữ số hàng đơn vị, sẽ được viết là ab. Giả sử a>ba
Em hãy chứng tỏ rằng hiệu ( ab - ba ) luôn luôn chia hết cho 9.
Chứng tỏ rằng tổng ( ab ba ) luôn luôn chia hết cho 11. Số ba là số viết ngược lại của số ab.
a) Ta có : ab - ba
= ( 10 x a + b ) - ( 10 x b + a )
= ( 10 x a - a ) - ( 10 x b - b )
= 9 x a - 9 x b
= 9 x ( a - b )
\(\Rightarrow\)ab - ba chia hết cho 9
b) Ta có: ab + ba
= ( 10 x a + b ) + ( 10 x b + a )
= ( 10 x a + a ) + ( 10 x b + b )
= 11 x a + 11 x b
= 11 x ( a + b )
\(\Rightarrow\)ab + ba chia hết cho 11
Nhớ k chị nha. Chúc em học tốt.
a)Ta có:
ab-ba =a.10+b-b.10-a
=a.9-b.9
Mà a > b nên thương nhỏ nhất của hai số sẽ bằng 9.
=> ab-ba luôn chia hết cho 9
b) ab+ba =a.10+b+b.10+a
=a.11+b.11
=(a+b).11
=> ab+ba luôn chia hết cho 11
???????????????????