Những câu hỏi liên quan
BY
Xem chi tiết
PD
19 tháng 5 2016 lúc 7:26

Gọi d là ƯCLN(n+1;n+2)

Ta có n+1\(⋮\)d;n+2\(⋮\)d

=>[(n+2)-(n+1)]\(⋮\)d

=>[n+2-n-1]\(⋮\)d

=>1\(⋮\)d

=>d=1

Vì ƯCLN(n+1;n+2)=1 nên phân số \(\frac{n+1}{n+2}\) luôn tối giản(nEN*)

Bình luận (0)
TQ
19 tháng 5 2016 lúc 11:13

Gọi d là ƯC( n+1; n+2)

=> (n+ 1) \(⋮\)d và (n+ 2) \(⋮\)d

=> ( n+2 - n-2)\(⋮\) d

=> 1\(⋮\)d

=> d=1

=> \(\frac{n+1}{n+2}\) là phân số tối giản.

Bình luận (0)
TD
Xem chi tiết
PN
6 tháng 5 2016 lúc 21:36

Gọi ƯCLN(n+1;n+2)=d(d\(\in\)N*

\(\Rightarrow\)n+1chia hết cho d;n+2 chia hết cho d

\(\Rightarrow\)n+2-(n+1)chia hết cho d

\(\Rightarrow\)n+2-n-1 chia hết cho d

\(\Rightarrow\)1 chia hết cho d\(\Rightarrow\)d\(\in\)Ư(1)={1}\(\Rightarrow\)d=1

Vậy phân số \(\frac{n+1}{n+2}\)là phân số tối giản

Bình luận (0)
NM
Xem chi tiết
NT
17 tháng 8 2016 lúc 16:16

Gọi d là ƯCLN(12n+1;30n+2)

Ta có: \(12n+1⋮d\Rightarrow5\left(12n+1\right)=60n+5⋮d\)

           \(30n+2⋮d\Rightarrow2\left(30n+2\right)=60n+4⋮d\)

\(\Rightarrow\left(60n+5\right)-60n-4⋮d\)

\(\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)=\left\{1;-1\right\}\)

Mà \(n\in N\Rightarrow d=1\)

Vậy \(\frac{12n+1}{30n+2}\) là phân số tối giản              ĐPCM

Bình luận (1)
NT
17 tháng 8 2016 lúc 16:30

Giải:

Gọi d = UCLN ( 12n + 1; 30n + 2 )

Ta có: 

\(12n+1⋮d\)

\(\Rightarrow5\left(12n+1\right)⋮d\)

\(\Rightarrow60n+5⋮d\)

\(30n+2⋮d\)

\(\Rightarrow2\left(30n+2\right)⋮d\)

\(\Rightarrow60n+4⋮d\)

\(\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\)

\(\Rightarrow60n+5-60n-4⋮d\)

\(\Rightarrow\left(60n-60n\right)+\left(5-4\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d\in\left\{\pm1\right\}\)

Vì \(d\in N\) nên d = 1

Vì d = UCLN( 12n + 1; 30n + 2 )= 1 \(\Rightarrow\frac{12n+1}{30n+2}\) là phân số tối giản.

\(\Rightarrowđpcm\)

 

Bình luận (0)
VT
17 tháng 8 2016 lúc 16:12

Để chứng minh  12n+1/30n+2 là phân số tối giản thì cần chứng tỏ 12n+1 và 30n+2 nguyên tố cùng nhau

Gọi ƯCLN(12n+1,30n+2)=d             (d∈N)

=> 12n+1 chia hết cho d       => 5(12n+1) chia hết cho d       => 60n+5 chia hết cho d

     30n+2 chia hết cho d       => 2(30n+2) chia hết cho d       => 60n+4 chia hết cho d

=>       (60n+5)-(60n+4) chia hết cho d

=>        1 chia hết cho d

=> d∈Ư(1)={1}

=> d=1

=> ƯCLN(12n+1,30n+2)=1

Vậy 12n+1/30n+2 là phân số tối giản

Bình luận (0)
TP
Xem chi tiết
H24
16 tháng 2 2019 lúc 21:14

Gọi \(d=UCLN\left(n+1,2n+3\right)\)              \(\left(d\inℕ^∗\right)\)

\(\Rightarrow\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}}\)\(\Rightarrow\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}\)

=> ( 2n + 3 ) - ( 2n + 2 ) \(⋮\)d

                1              \(⋮\)d

=> d = 1

=> \(\frac{n+1}{2n+3}\)là phân số tối giản

Bình luận (0)
HS
16 tháng 2 2019 lúc 21:16

Gọi d là ƯCLN\((n+1,2n+3)\)

Ta có : \(\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2(n+1)⋮d\\2n+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}\)

\((2n+3)-(2n+2)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Do đó : \(\frac{n+1}{2n+3}\)là phân số tối giản\((đpcm)\)

Bình luận (0)
CM
16 tháng 2 2019 lúc 21:18

gọi a là ƯCLN(n+1,2n+3)

n+1 chia hết cho  a =>2(n+1) chia hết cho a=> 2n+2 chia hết cho a

2n+3 chia hết cho a ;2n+2 chia hết cho a

(2n+3)-(2n+2)  chia hết cho a =>1 chia hết cho a

=>ƯCLN((n+1,2n+3)=1 hoặc -1

=> phân số đó tối giản

Bình luận (0)
WJ
Xem chi tiết
DV
11 tháng 4 2015 lúc 10:00

ƯCLN(n+1;n+2)=1 nên \(\frac{n+1}{n+2}\)là phân số tối giản.

          Bạn nhớ chọn Đúng nha !

Bình luận (0)
TT
11 tháng 4 2015 lúc 10:44

Phân số tối giản là phân số mà tử số và mẫu số có ƯCLN \(\ne\)0.

Vì ƯCLN của n + 1 và n + 2 là 1 nên \(\frac{n+1}{n+2}\)là phân số tối giản.

Bình luận (0)
KT
29 tháng 6 2018 lúc 18:03

tôi nhận xét nè , các bạn trả loiừ thiếu chặt chẽ, không đầy đủ, mở sánh CHUYÊN ĐỀ 6 RA MÀ COI NHA ,hihi

Bình luận (0)
NT
Xem chi tiết
H24
27 tháng 4 2016 lúc 20:04

Gọi d là ước chung của n+1 và n+2

Khi đó:n+1 chia hết cho d

          n+2 chia hết cho d

=>(n+1)-(n+2) chia hết cho d

=>1 chia hết cho d

=>n+1 và n+2 là 2 số nguyên tố cùng nhau

Vậy phân số n+1/n+2 là phân số tối giản

Bình luận (0)
FT
27 tháng 4 2016 lúc 20:06

Gọi \(ƯCLN\)\(\left(\frac{n+1}{n+2}\right)\)là \(d\left(d\in Z\right)\)

\(\Rightarrow n+1\)chia hết cho \(d\)

\(\Rightarrow n+2\)chia hết cho \(d\)

\(\Rightarrow1\left(n+1\right)\) chia hết cho \(d\)

\(\Rightarrow1\left(n+2\right)\) chia hết cho \(d\)

\(\Rightarrow1\left(n+1\right)-1\left(n+2\right)\)chia hết cho \(d\)

\(\Rightarrow-1\) chia hết cho \(d\)

\(\Rightarrow d\inƯ\left(-1\right)=\left\{-1;1\right\}\)

\(\Rightarrow d=\int^1_{-1}\)

Mà bạn này, lớp 5 đã học \(ƯCLN\) đâu nhỉ.

Bình luận (0)
NT
27 tháng 4 2016 lúc 20:12

tại vì vội quá nên bấm thành lớp 5 thực ra là lớp 6 cảm ơn nhìu nhák

Bình luận (0)
CC
Xem chi tiết
VT
9 tháng 5 2016 lúc 15:10

Gọi ƯCLN (n;n+1) là :d

ta có :n chia hết cho d;n+1 chia hết cho d

      => n+1 - n chia hết cho d

      => 1 chia hết cho d

      =>1=d

vậy \(\frac{n}{n+1}\) tối giản

Bình luận (0)
TM
9 tháng 5 2016 lúc 16:01

đặt ƯCLN(n;n+1)=d

=> n chia hết cho d và n+1 chia hết cho d

=> (n+1)-n chia hết cho d

=> 1 chia hết cho d

=> d=1

phân số có ƯCLN giữa tử và mẫu là 1 thì phân số đó là phân số tối giản (ĐPCM)

mk cx fan Chi Pu nè :)))

Bình luận (0)
TM
9 tháng 5 2016 lúc 16:03

đặt ƯCLN(n;n+1)=d

=> n chia hết cho d và n+1 chia hết cho d

=> (n+1)-n chia hết cho d

=> 1 chia hết cho d

=> d=1

phân số có ƯCLN giữa tử và mẫu là 1 thì phân số đó là phân số tối giản

vậy \(\frac{n}{n+1}\)là phân số tối giản (ĐPCM)

Bình luận (0)
NY
Xem chi tiết
PN
Xem chi tiết
MC
6 tháng 4 2017 lúc 17:25

Gọi d là UCLN của 12n +1/ 30n+2

=> 12n + 1 chia hết cho d; 30n + 2 chia hết cho d

=> 5.(12n + 1) chia hết cho d; 2.(30n + 2) chia hết cho d

=> 60n + 5 chia hết cho d; 60n + 4 chia hết cho d

=>(60n + 5) - (60n + 4) chia hết cho d

=> 1 chia hết cho d

=> d = 1 

=> giả sử đầu bài đúng 

=> phân số 12n+1/30n+2 là phân số tối giản (n thuộc N)

Bình luận (0)
LD
28 tháng 4 2020 lúc 10:09

Gọi d là ƯC(12n + 1 ; 30n + 2)

\(\Rightarrow\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}\Rightarrow}\hept{\begin{cases}5\left(12n+1\right)⋮d\\2\left(30n+2\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}\)

=> 60n + 5 - 60n + 4 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> ƯCLN(12n + 1; 30n + 2) = 1

=> \(\frac{12n+1}{30n+2}\)tối giản ( đpcm )_

Bình luận (0)
 Khách vãng lai đã xóa