Những câu hỏi liên quan
SV
Xem chi tiết
NH
Xem chi tiết
NT
2 tháng 8 2021 lúc 23:04

Đề sai hết ở cả hai câu rồi bạn

Bình luận (0)
SD
Xem chi tiết
DH
20 tháng 7 2021 lúc 8:40

a) \(\widehat{BAC}=180^o-\widehat{B}-\widehat{C}=180^o-60^o-30^o=90^o\)

\(\widehat{ADH}=90^o-\widehat{DAH}=90^o-\left(\widehat{DAB}-\widehat{HAB}\right)=90^o-\left(45^o-30^o\right)=75^o\)

\(\widehat{HAD}=\widehat{DAB}-\widehat{HAB}=45^o-30^o=15^o\)

b) Xét tam giác \(EAD\)vuông tại \(E\)có \(\widehat{EAD}=\frac{1}{2}\widehat{BAC}=45^o\)nên tam giác \(EAD\)vuông cân tại \(E\).

Do đó phân giác \(EK\)của tam giác \(EAD\)cũng đồng thời là đường cao

suy ra \(EK\)vuông góc với \(AD\).

Bình luận (1)
 Khách vãng lai đã xóa
PH
Xem chi tiết
NN
19 tháng 7 2019 lúc 16:28

a ) Ta có : AB < AC < BC ( 6 < 8 < 10 )

=> \(\widehat{C}< \widehat{B}< \widehat{A}\)( quan hệ giữa góc và cạnh đối diện )

b ) \(\Delta ABC\)có : AB2 + AC2 = 62 + 82 = 100

                             BC2 = 102 = 100

=> AB2 + AC2 = BC2

Theo đ/l Py-ta-go => Tam giác ABC là tam giác vuông

c ) DH \(\perp\)BC => Tam giác BHD vuông

Xét 2 tam giác vuông : \(\Delta BHD\)và \(\Delta BAD\)có :

BD là cạnh chung

\(\widehat{ABD}=\widehat{HBD}\)( do BD là tia p/g của góc B )

=> Tam giác BHD = tam giác BAD

=> \(\widehat{BDA}=\widehat{BDH}\)

=> DB là tia p/g của góc ADN

d ) tự làm

Bình luận (0)
PH
Xem chi tiết
CC
Xem chi tiết
EC
19 tháng 7 2019 lúc 16:25

A B C D H M

Giải: a) Ta có: AB < AC < BC(6cm < 8cm< 10cm)

=> \(\widehat{C}< \widehat{B}< \widehat{A}\) (quan hệ giữa cạnh và góc đối diện)

b) Ta có: AB+ AC2 = 62 + 82 = 36 + 64 = 100

         BC2 = 102 = 100

=> AB2 + AC2 = BC2

=> t/giác ABC là t/giác vuông (theo định lí Pi - ta - go đảo)

c) Xét t/giác ABD và t/giác HBD

có: \(\widehat{A}=\widehat{BHD}=90^0\)

   BD : chung

  \(\widehat{ABD}=\widehat{HBD}\)(gt)

=> t/giác ABD = t/giác HBD (ch - gn)

=>\(\widehat{ADB}=\widehat{HDB}\) (2 góc t/ứng)

=> DB là tia p/giác của góc ADH

d) Xét t/giác ADM và t/giác HDC

có: \(\widehat{MAD}=\widehat{DHC}=90^0\)

  AD = HD (vì t/giác ABD = t/giác HBD)

   \(\widehat{ADM}=\widehat{HDC}\) (đối đỉnh)

=> t/giác ADM = t/giác HDC (g.c.g)

=> AM= HC (2 cạnh t/ứng)

Mà AB + AM = BM 

   BH +  HC = BC

và AB = BH (vì t/giác ABD = t/giác HBD) ; AM = HC (cmt)

=> BM = BC => t/giác AMC cân tại B

=> \(\widehat{M}=\widehat{C}=\frac{180^0-\widehat{B}}{2}\) (1)

Ta có: AB = HB (vì t/giác ABD  = t/giác HBD)

=> t/giác ABH cân tại B

=> \(\widehat{BAH}=\widehat{BHA}=\frac{180^0-\widehat{B}}{2}\) (2)

Từ (1) và (2) => \(\widehat{M}=\widehat{BAH}\)

Mà 2 góc này ở vị trí đồng vị

=> CM // AH

Bình luận (0)
H24
Xem chi tiết
TT
Xem chi tiết
NT
8 tháng 4 2017 lúc 10:10

A B C 6 10 D H K

a, Xét \(\Delta ABC\)VUÔNG tại A

Áp dụng định lý pitago ta có:

\(BC^2=AB^2+AC^2\)

\(\Rightarrow AB^2=BC^2-AC^2\)

\(\Rightarrow AB^2=10^2-6^2\)

\(\Rightarrow AB^2=100-36\)

\(\Rightarrow AB^2=64\)

\(\Rightarrow AB=\sqrt{64}=8\)

VẬY AB=8 cm

b, Xét \(\Delta ABD\)và \(\Delta HBD\)CÓ:

\(\widehat{BAD}=\widehat{BHD}=90độ\)

\(\widehat{ABD}=\widehat{HBD}\)(do BD là tia phân giác của \(\widehat{B}\))

BD là cạnh chung

\(\Rightarrow\Delta ABD=\Delta HBD\)(ch-gn)

\(\Rightarrow AD=HD\)(2 CẠNH TƯƠNG ỨNG)

c,Do \(\Delta ABD=\Delta HBD\left(câub\right)\)

\(\Rightarrow\widehat{BDA}=\widehat{BDH}\)(2 góc tương ứng)

lại có \(\widehat{ADK}=\widehat{HDC}\)(đối đỉnh)

\(\Rightarrow\widehat{BDA}+\widehat{ADK}=\widehat{BDH}+\widehat{HDC}\)

\(\Rightarrow\widehat{BDK}=\widehat{BDC}\)

Xét \(\Delta KBD\) VÀ \(\Delta CBD\)CÓ:

\(\widehat{ABD}=\widehat{CBD}\)(Do BD là tia phân giác của \(\widehat{B}\))

BD là cạnh chung

\(\widehat{BDK}=\widehat{BDC}\left(cmt\right)\)

Do đó \(\Delta KBD=\Delta CBD\left(g-c-g\right)\)

\(\Rightarrow BK=BC\)(2 CẠNH TƯƠNG ỨNG)

\(\Rightarrow\Delta KBC\) cân tại B

Bình luận (0)
LN
8 tháng 4 2017 lúc 11:05

uhuhuhu sợ bài này lắm rồi !

Bình luận (0)
TT
10 tháng 4 2017 lúc 20:36

Có câu c ko bn???

Bình luận (0)
LV
Xem chi tiết
NT
27 tháng 6 2023 lúc 23:47

a: ΔABC cân tại A có AH là phân giác

nên H là trung điểm của BC

ΔABC cân tại A có AH là trung tuyến

nên AH vuông góc BC

b: BH=CH=12/2=6cm

AH=căn AB^2-AH^2=8cm

c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

góc DAH=góc EAH

=>ΔADH=ΔAEH

=>AD=AE và HD=HE

=>ΔHDE cân tại H

d: Xét ΔABC có AD/AB=AE/AC

nên DE//BC

Bình luận (0)