Những câu hỏi liên quan
NH
Xem chi tiết
NM
Xem chi tiết
NH
Xem chi tiết
NN
30 tháng 12 2017 lúc 16:16

a) (x+1)+(x+2)+(x+3)+........+(x+100)=5750

(x+x+...+x)+(1+2+3+...+100)=5750

(x.100)+(1+100).100:2=5750

(x.100)+5050=5750

x.100=5750-5050

x.100=700

x       =700:100

x       = 7

Vậy x = 7 

c)  trước hết cần chú ý rằng mọi số tự nhiên đều viết được dưới 1 trong 3 dạng: 3k, 3k +1 hoặc 3k +2(với k là số tự nhiên) 

+) Nếu p = 3k vì p là số nguyên tố nên k = 1 => p = 3 => p+10 = 13 là số nguyên tố; p+14 = 17 là số nguyên tố (1) 

+) Nếu p = 3k +1 => p +14 = 3k+1+14 = 3k+15 = 3(k+5) chia hết cho 3 và lớn hơn 3 nên là hợp số (loại vì không thỏa mãn điều kiện đề bài) (2) 

+) Nếu p=3k+2 => p+10 = 3k+2+10 = 3k+12 = 3(k+4) chia hết cho 3 và lớn hơn 3 nên là hợp số (loại vì không thỏa mẫn điều kiện đề bài) (3) 

Từ (1), (2), (3) suy ra p = 3 là giá trị cần tìm. 

Vậy nha còn câu b mình tạm thời chưa biết, chúc bạn học tốt

Bình luận (0)
NT
29 tháng 4 2018 lúc 12:06

ab+2a-b=3

a(b+2)-b=3

a(b+2)-b+2=3+2

(b+2)(a-1)=5

sau đó bạn tìm các nghiệm cho chúng thỏa mãn nhé(cho là hai số trên thuộc ước của 5 rồi tính)

Bình luận (0)
NT
29 tháng 4 2018 lúc 12:10

bài a và c theo mình thì bạn linh nhi nguyễn đặng thêm vào câu a cho hoàn chỉnh

câu c phải xét với số p nguyên tố bé nhất là 2 đã

sau đó thỏa mãn 3 rồi mới xét nhé

Bình luận (0)
DU
Xem chi tiết
AH
12 tháng 10 2024 lúc 19:16

Lời giải:

$ab+11$ là số nguyên tố, mà $ab+11>2$ nên $ab+11$ là số nguyên tố lẻ.

$\Rightarrow ab$ chẵn.

$\Rightarrow$ trong 2 số sẽ có ít nhất 1 số chẵn.

TH1: $a$ chẵn. Do $a$ nguyên tố nên $a=2$

Khi đó cần tìm $b$ sao cho $b, 14+b$ và $2b+11$ nguyên tố

Nếu $b\vdots 3$ thì $b=3$ (do $b$ nguyên tố). Khi đó $14+b=17, 2b+11=17$ là snt (hoàn toàn thỏa mãn)

Nếu $b$  chia 3 dư 1 thì $14+b\vdots 3$. Mà $14+b>3$ nên không là snt (loại) 

Nếu $b$ chia 3 dư 2 thì $2b+11\vdots 3$. Mà $2b+11>3$ nên không là snt (loại) 

TH2: $b$ chẵn. Do $b$ nguyên tố nên $b=2$

Khi đó cần tìm a sao cho $a, 7a+2, 2a+11$ là snt. 

Nếu $a\vdots 3$ thì $a=3$. Khi đó: $7a+2=23, 2a+11=17$ là snt (tm) 

Nếu $a$ chia 3 dư 1 thì $7a+2\vdots 3$. Mà $7a+2>3$ nên không là snt (loại) 

Nếu $a$ chia $3$ dư 2 thì $2a+11\vdots 3$. Mà $2a+11>3$ nên không là snt (loại) 

Vậy phân số cần tìm là $\frac{2}{3}$ hoặc $\frac{3}{2}$

Bình luận (0)
TH
Xem chi tiết
GL
25 tháng 2 2018 lúc 23:35

diendantoanhoc.net 

Bn mở cái này là có

Bình luận (0)
HC
Xem chi tiết
CM
13 tháng 11 2016 lúc 9:43

A, Mọi số khi chia cho 3 chỉ xảy ra trong ba trường hợp: + chia hết cho 3

                                                                                   + chia 3 dư 1

                                                                                   + chia 3 dư 2

Vậy số p chỉ có một trong ba dạng :p=3k ; p=3k+1 ; p=3k +2 ( k thuộc N )

Nếu p= 3k thì p=3 ( vì phải là số nguyên tố )

                          Khi đó p +34= 3+34=37 ( là số nguyên tố )

                                    p+50= 3+50= 53 ( là số nguyên tố )

Nếu p= 3k+1 thì p+34= ( 3k+1 ) +34=3k+35 chia hết cho 5 và lớn hơn 1 nên là hợp số ( ko thỏa mãn )

Nếu p= 3k +2 thì p+50= ( 3k +2 ) + 50= 3k + 52 chia hết cho 2 và lớn hơn 1 nên ( ko thỏa mãn )

Vậy p=3 là thỏa mãn

Bình luận (0)
HC
13 tháng 11 2016 lúc 19:04

Giúp mình với. Mình sẽ k cho

Bình luận (0)
CT
Xem chi tiết
ND
5 tháng 11 2016 lúc 21:22

Do \(ab+1>3\)

Nên \(ab+1\) là số lẻ

Suy ra: \(a\) là số chẵn hoặc \(b\) là số chẵn

Suy ra \(a=2\) hoặc \(b=2\)

+) Khi \(a=2\)

Nếu \(b\) chia \(3\)\(1\) thì \(7a+b=14+b\) chia hết cho \(3\) (Loại) Nếu \(b\) chia \(3\) \(2\) thì \(ab+1=2b+1\) chia hết cho \(3\) (Loại) Vậy \(b\)chia hết cho \(3\)
Suy ra: \(b=3\)
+) Khi \(b=2\)
Cũng xét tương tự bạn nhé!
Các cặp số \(\left(3;2\right)\) 
Bình luận (1)
H24
Xem chi tiết
PB
Xem chi tiết
CT
6 tháng 7 2017 lúc 11:58

a, Do (a,b) = 6 => a = 6m; b = 6n với m,n ∈ N*; (m,n) = 1 và m ≤ n

Vì vậy ab = 6m.6n = 36mn, do ab = 216 => mn = 6. Do đó m = 1, n = 6 hoặc m = 2, n = 3

Với m = 1, n = 6 thì a = 6, b = 36

Với m = 2, n = 3 thì a = 12, b = 18

Vậy (a;b) là (6;36); (12;18)

b, Vì p là số nguyên tố nên ta xét các trường hợp của p

Trường hợp 1: p = 2, khi đó p+4 = 6; p+8 = 10 không là số nguyên tố (loại).

Trường hợp 2: p = 3, khi đó p+4 = 7; p+8 = 11 là hai số nguyên tố (thỏa mãn).

Trường hợp 3: p>3 nên p có dạng 3k+1; 3k+2 với kN*.

Nếu p = 3k+1 thì p+8 = 3k+1+8 = 3k+9 chia hết cho 3 và lớn hơn 3 nên p+8 không là số nguyên tố (loại).

Nếu p = 3k+2 thì p+4 = 3k+2+4 = 3k+6 chia hết cho 3 và lớn hơn 3 nên p+4 không là số nguyên tố (loại).

Kết luận. p = 3

Bình luận (0)