Những câu hỏi liên quan
NL
Xem chi tiết
TD
28 tháng 8 2022 lúc 18:57

Vì tui dùng app giải

Bình luận (0)
RK
Xem chi tiết
HH
Xem chi tiết
PD
25 tháng 7 2018 lúc 8:41

\(1;a,942^{60}-351^{37}\)

\(=\left(942^4\right)^{15}-\left(....1\right)\)

\(=\left(....6\right)^{15}-\left(...1\right)\)

\(=\left(...6\right)-\left(...1\right)=\left(....5\right)⋮5\)

\(b,99^5-98^4+97^3-96^2\)

\(=\left(...9\right)-\left(...6\right)+\left(...3\right)-\left(...6\right)\)

\(=\left(...6\right)-\left(...6\right)=\left(...0\right)⋮2;5\)

\(2;5n-n=4n⋮4\)

Bình luận (0)
HH
25 tháng 7 2018 lúc 8:44

chả hiểu j

Bình luận (0)
LX
Xem chi tiết
HA
Xem chi tiết
TN
24 tháng 7 2019 lúc 11:06

a) \(3^5+3^4+3^3\)

\(=3^3\cdot3^2+3^3\cdot3+3^3\cdot1\)

\(=3^3\left(3^2+3+1\right)\)

\(=3^3\cdot13⋮13\)     (đpcm)

b) \(2^{10}-2^9+2^8-2^7\)

\(=2^7\cdot2^3-2^7\cdot2^2+2^7\cdot2-2^7\cdot1\)

\(=2^7\left(2^3-2^2+2-1\right)\)

\(=2^7\cdot5⋮5\)    (đpcm)

=))

Bình luận (0)
H24
Xem chi tiết
H24
8 tháng 12 2017 lúc 19:46

\(A=3^1+3^2+...+3^{30}\)

=> A=3(1+3) +...+ 329(1+3)

        =3.4+ ... + 329.4 \(⋮\)4

Chia het 13 ban lam tuong tu nhe

Bình luận (0)
TK
Xem chi tiết
HG
18 tháng 10 2016 lúc 21:20

\(2+2^2+2^3+2^4+...+2^{99}+2^{100}\)

\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)\)

\(=2.3+2^3.3+...+2^{99}.3\)

\(=3\left(2+2^3+...+2^{99}\right)\)chia hết cho 3 (Đpcm)

Bình luận (0)
LL
18 tháng 10 2016 lúc 21:27

Đặt A = 2 + 22 + 23 + 24 + ... + 299 + 2100

Ta có:
A = 2 + 22 + 23 + 24 + ... + 299 + 2100

A = (2 + 22) + (23 + 24) + ... + (299 + 2100)

A = 2.(1 + 2) + 23.(1 + 2) + ... + 299.(1 + 2)

A = 2.3 + 23.3 + ... + 299.3

A = (2 + 23 + ... + 299) . 3

Vì (2 + 23 + ... + 299) . 3 chia hết cho 3 nên 2 + 22 + 23 + 24 + ... + 299 + 2100 chia hết cho 3 (đpcm)

Bình luận (0)
DD
18 tháng 10 2016 lúc 21:49

\(2+2^2+2^3+2^4+...+2^{99}+2^{100}\)

\(=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{97}+2^{98}+2^{99}+2^{100}\right)\)

\(=\left(2+2^2+2^3+2^4\right)+2^4\cdot\left(2+2^2+2^3+2^4\right)+....+2^{96}\cdot\left(2+2^2+2^3+2^4\right)\)

\(\)\(=30+2^4\cdot30+...+2^{92}\cdot30\)

\(=30\cdot\left(2^4+2^8+...+2^{96}\right)\)

Vì 30 chia hết cho 3 \(\Rightarrow\)

\(2+2^2+2^3+2^4+...+2^{99}+2^{100}\)chia hết cho 3

Bình luận (0)
TC
Xem chi tiết
KL
31 tháng 1 2016 lúc 21:53

7^100-7^99+7^98

=7^98(7^2-7+1)

=7^98.43 chia hết cho 43

b) ta có 2^62=(2^2)^31=4^31

vì 4^31<5^31=>2^62<5^31

Bình luận (0)
NT
Xem chi tiết