Những câu hỏi liên quan
TN
Xem chi tiết
NM
28 tháng 10 2021 lúc 21:02

\(ĐK:x\ge1\\ PT\Leftrightarrow12\sqrt{x-1}-\sqrt{x-1}-8\sqrt{x-1}+\sqrt{x-1}=16\\ \Leftrightarrow4\sqrt{x-1}=16\\ \Leftrightarrow\sqrt{x-1}=4\\ \Leftrightarrow x-1=16\\ \Leftrightarrow x=17\left(tm\right)\)

Bình luận (1)
DL
28 tháng 10 2021 lúc 21:12

\(< =>2\sqrt{36\left(x-1\right)}-\dfrac{1}{3}\sqrt{9\left(x-1\right)}-4\sqrt{4\left(x-1\right)}+\sqrt{x-1}=16 \)\(< =>12\sqrt{x-1}-\sqrt{x-1}-8\sqrt{x-1}+\sqrt{x-1}=16\)
\(< =>4\sqrt{x-1}=16\)
\(< =>\sqrt{x-1}=4 \)
\(< =>x-1=16\)
\(< =>x=17\)

Bình luận (2)
H24
Xem chi tiết
NT
28 tháng 7 2023 lúc 16:37

a: =>2*căn x+5+căn x+5-1/3*3*căn x+5=4

=>2*căn(x+5)=4

=>căn (x+5)=2

=>x+5=4

=>x=-1

b: =>\(6\sqrt{x-1}-3\sqrt{x-1}-2\sqrt{x-1}+\sqrt{x-1}=16\)

=>2*căn x-1=16

=>x-1=64

=>x=65

Bình luận (0)
HM
28 tháng 7 2023 lúc 16:50

c, \(\sqrt{\left(x-3\right)^2}-2\sqrt{\left(x-1\right)^2}+\sqrt{x^2}=0\\ \Leftrightarrow\left|x-3\right|-2\left|x-1\right|+\left|x\right|=0\left(1\right)\)

TH1\(x\ge3\)

\(\left(1\right)\Rightarrow x-3-2x+2+x=0\\ \Leftrightarrow-1=0\left(loại\right)\)

TH2\(2\le x< 3\)

\(\left(1\right)\Rightarrow3-x-2x+2+x=0\\ \Leftrightarrow-2x=-5\\ \Leftrightarrow x=\dfrac{5}{2}\left(tm\right)\)

TH3\(0\le x< 2\)

\(\left(1\right)\Rightarrow3-x+2x-2+x=0\\ \Leftrightarrow2x=1\\ \Leftrightarrow x=\dfrac{1}{2}\left(tm\right)\)

TH4\(x< 0\)

\(\left(1\right)\Rightarrow3-x+2x-2-x-=0\\ \Leftrightarrow1=0\left(loại\right)\)

Vậy \(x\in\left\{\dfrac{1}{2};\dfrac{5}{2}\right\}\)

Bình luận (0)
NQ
Xem chi tiết
NT
1 tháng 9 2022 lúc 22:08

Sửa đề: \(2\sqrt{36x-36}-\dfrac{1}{3}\sqrt{9x-9}-4\sqrt{4x-4}+\sqrt{x-1}=16\)

\(\Leftrightarrow12\sqrt{x-1}-\sqrt{x-1}-8\sqrt{x-1}+\sqrt{x-1}=16\)

=>4 căn x-1=16

=>căn x-1=4

=>x-1=16

=>x=17

Bình luận (0)
NV
Xem chi tiết
H24
13 tháng 11 2021 lúc 14:56

\(=2\sqrt{3}-4\sqrt{3}+5\sqrt{3}=3\sqrt{3}\)

Bình luận (0)
NT
13 tháng 11 2021 lúc 22:30

Bài 5: 

\(\widehat{B}=60^0\)

\(AB=8\sqrt{3}\left(cm\right)\)

\(BC=16\sqrt{3}\left(cm\right)\)

Bình luận (0)
NH
Xem chi tiết
NA
20 tháng 8 2019 lúc 21:42

\(a,\sqrt{x+1}=\sqrt{2-x}\)

\(\Rightarrow x+1=2-x\)

\(\Rightarrow2x=1\)

\(\Rightarrow x=\frac{1}{2}\)

Bình luận (0)
NN
21 tháng 10 2020 lúc 20:28

a) \(ĐKXĐ:-1\le x\le2\)

Bình phương 2 vế ta có: 

\(x+1=2-x\)\(\Leftrightarrow2x=1\)\(\Leftrightarrow x=\frac{1}{2}\)( đpcm )

Vậy \(x=\frac{1}{2}\)

b) \(ĐKXĐ:x\ge1\)

\(\sqrt{36x-36}-\sqrt{9x-9}-\sqrt{4x-4}=16-\sqrt{x-1}\)

\(\Leftrightarrow\sqrt{36\left(x-1\right)}-\sqrt{9\left(x-1\right)}-\sqrt{4\left(x-1\right)}+\sqrt{x-1}=16\)

\(\Leftrightarrow6\sqrt{x-1}-3\sqrt{x-1}-2\sqrt{x-1}+\sqrt{x-1}=16\)

\(\Leftrightarrow2\sqrt{x-1}=16\)\(\Leftrightarrow\sqrt{x-1}=8\)

\(\Leftrightarrow x-1=64\)\(\Leftrightarrow x=65\)( thỏa mãn ĐKXĐ )

Vậy \(x=65\)

c) \(ĐKXĐ:x\ge1\)

\(\sqrt{16x-16}-\sqrt{9x-9}+\sqrt{4x-4}+\sqrt{x-1}=8\)

\(\Leftrightarrow\sqrt{16\left(x-1\right)}-\sqrt{9\left(x-1\right)}+\sqrt{4\left(x-1\right)}+\sqrt{x-1}=8\)

\(\Leftrightarrow4\sqrt{x-1}-3\sqrt{x-1}+2\sqrt{x-1}+\sqrt{x-1}=8\)

\(\Leftrightarrow4\sqrt{x-1}=8\)\(\Leftrightarrow\sqrt{x-1}=2\)

\(\Leftrightarrow x-1=4\)\(\Leftrightarrow x=5\)( thỏa mãn ĐKXĐ )

Vậy \(x=5\)

Bình luận (0)
 Khách vãng lai đã xóa
HT
Xem chi tiết
NT
11 tháng 8 2021 lúc 21:45

a: Ta có: \(\sqrt{x}< 3\)

nên \(0\le x< 9\)

b: Ta có: \(\sqrt{4x+16}+\sqrt{x+4}+2\sqrt{9x+36}=35\)

\(\Leftrightarrow2\sqrt{x+4}+\sqrt{x+4}+6\sqrt{x+4}=35\)

\(\Leftrightarrow\sqrt{x+4}=\dfrac{35}{9}\)

\(\Leftrightarrow x+4=\dfrac{1225}{81}\)

hay \(x=\dfrac{901}{81}\)

Bình luận (0)
NT
11 tháng 8 2021 lúc 21:51

a) \(\sqrt{x}< 3\Rightarrow x< 9\)

b) \(\sqrt{4x+16}+\sqrt{x+4}+2\sqrt{9x+36}=35\)

\(\Rightarrow2\sqrt{x+4}+\sqrt{x+4}+6\sqrt{x+4}=35\)

\(\Rightarrow\sqrt{x+4}=\dfrac{35}{9}\)

\(\Rightarrow x+4=\dfrac{1225}{81}\)

\(\Rightarrow x=\dfrac{901}{81}\)

c) \(\sqrt{x+2\sqrt{x-1}}=3\)

\(\Rightarrow\sqrt{\left(x-1\right)+2\sqrt{x-1}+1}=3\)

\(\Rightarrow\sqrt{\left(x-1+1\right)^2}=3\)

\(\Rightarrow\sqrt{x^2}=3\)

\(\Rightarrow\left|x\right|=3\) \(\Rightarrow\left\{{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)

Bình luận (0)
KN
Xem chi tiết
VH
22 tháng 7 2023 lúc 8:47

\(a) \sqrt{4x^2− 9} = 2\sqrt{x + 3}\)

\(ĐK:x\ge\dfrac{3}{2}\)

\(pt\Leftrightarrow4x^2-9=4\left(x+3\right)\)

\(\Leftrightarrow4x^2-9=4x+12\)

\(\Leftrightarrow4x^2-4x-21=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1-\sqrt{22}}{2}\left(l\right)\\x=\dfrac{1+\sqrt{22}}{2}\left(tm\right)\end{matrix}\right.\)

\(b)\sqrt{4x-20}+3.\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\)

\(ĐK:x\ge5\)

\(pt\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

\(\Leftrightarrow2\sqrt{x-5}=4\Leftrightarrow\sqrt{x-5}=2\)

\(\Leftrightarrow x-5=4\Leftrightarrow x=9\left(tm\right)\)

Bình luận (0)
VH
22 tháng 7 2023 lúc 9:06

\(c)\dfrac{2}{3}\sqrt{9x-9}-\dfrac{1}{4}\sqrt{16x-16}+27.\sqrt{\dfrac{x-1}{81}}=4\)

ĐK:x>=1

\(pt\Leftrightarrow2\sqrt{x-1}-\sqrt{x-1}+3\sqrt{x-1}=4\)

\(\Leftrightarrow4\sqrt{x-1}=4\Leftrightarrow\sqrt{x-1}=1\)

\(\Leftrightarrow x-1=1\Leftrightarrow x=2\left(tm\right)\)

\(d)5\sqrt{\dfrac{9x-27}{25}}-7\sqrt{\dfrac{4x-12}{9}}-7\sqrt{x^2-9}+18\sqrt{\dfrac{9x^2-81}{81}}=0\)

\(ĐK:x\ge3\)

\(pt\Leftrightarrow3\sqrt{x-3}-\dfrac{14}{3}\sqrt{x-3}-7\sqrt{x^2-9}+6\sqrt{x^2-9}=0\)

\(\Leftrightarrow-\dfrac{5}{3}\sqrt{x-3}-\sqrt{x^2-9}=0\Leftrightarrow\dfrac{5}{3}\sqrt{x-3}+\sqrt{x^2-9}=0\)

\(\Leftrightarrow(\dfrac{5}{3}+\sqrt{x+3})\sqrt{x-3}=0\)

\(\Leftrightarrow\sqrt{x-3}=0\)    (vì \(\dfrac{5}{3}+\sqrt{x+3}>0\))

\(\Leftrightarrow x-3=0\Leftrightarrow x=3\left(nhận\right)\)

 

Bình luận (0)
DN
Xem chi tiết
H24
2 tháng 6 2017 lúc 21:27

\(\sqrt{36x-36}-\sqrt{9x-9}-\sqrt{4x-4}=16-\sqrt{x-1}\)

\(\Rightarrow\sqrt{36\left(x-1\right)}-\sqrt{9\left(x-1\right)}-\sqrt{4\left(x-1\right)}=16-\sqrt{x-1}\)

\(\Leftrightarrow\sqrt{36}\sqrt{x-1}-\sqrt{9}\sqrt{x-1}-\sqrt{4}\sqrt{x-1}=16-\sqrt{x-1}\)

\(\Leftrightarrow6\sqrt{x-1}-3\sqrt{x-1}-2\sqrt{x-1}=16-\sqrt{x-1}\)

\(\Leftrightarrow\sqrt{x-1}=16-\sqrt{x-1}\)

\(\Leftrightarrow\sqrt{x-1}+\sqrt{x-1}=16\)

\(\Leftrightarrow2\sqrt{x-1}=16\)

\(\Leftrightarrow\sqrt{x-1}=8\)

\(\Leftrightarrow x-1=64\)

\(\Leftrightarrow x=64+1\)

\(\Leftrightarrow x=65\)

Vậy \(x=65\)

Bình luận (0)
MD
2 tháng 6 2017 lúc 21:28

\(\sqrt{36x-36}-\sqrt{9x-9}-\sqrt{4x-4}=16-\sqrt{x-1}\)

<=> \(6\sqrt{x-1}-3\sqrt{x-1}-2\sqrt{x-1}+\sqrt{x-1}=16\)

<=> \(\sqrt{x-1}\left(6-3-2+1\right)=16\)

<=> \(\sqrt{x-1}=8\)

<=> \(x-1=64\)

<=> \(x=65\)

Vậy nghiệm của PT: S= \(\left\{65\right\}\)

P/s: Sai đừng trách mk nha!

Bình luận (4)
BT
2 tháng 6 2017 lúc 21:39

\(\sqrt{36x-36}-\sqrt{9x-9}-\sqrt{4x-4}=16-\sqrt{x-1}\)

\(\sqrt{36\left(x-1\right)}-\sqrt{9\left(x-1\right)}-\sqrt{4\left(x-1\right)}=16-\sqrt{x-1}\)

\(\sqrt{36}\sqrt{x-1}-\sqrt{9}\sqrt{x-1}-\sqrt{4}\sqrt{x-1}=16-\sqrt{x-1}\)

\(\left(6-3-2\right)\sqrt{x-1}=16-\sqrt{x-1}\)

\(\sqrt{x-1}=16-\sqrt{x-1}\)

\(\sqrt{x-1}+\sqrt{x-1}=16\)

\(2\sqrt{x-1}=16\)

\(\sqrt{x-1}=8\)

\(\Rightarrow x-1=64\)

\(x=65\)

Vậy \(x=65\)

Bình luận (0)
QE
Xem chi tiết
MY
10 tháng 7 2021 lúc 10:19

a,\(\sqrt{\left(3x-1\right)^2}=5=>|3x-1|=5=>\left[{}\begin{matrix}3x-1=5\\3x-1=-5\end{matrix}\right.\)

\(=>\left[{}\begin{matrix}x=2\\x=-\dfrac{4}{3}\end{matrix}\right.\)

b, \(\sqrt{4x^2-4x+1}=3=\sqrt{\left(2x-1\right)^2}=3=>\left[{}\begin{matrix}2x-1=3\\2x-1=-3\end{matrix}\right.\)

\(=>\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

c, \(\sqrt{x^2-6x+9}+3x=4=>|x-3|=4-3x\)

TH1: \(|x-3|=x-3< =>x\ge3=>x-3=4-3x=>x=1,75\left(ktm\right)\)

TH2 \(|x-3|=3-x< =>x< 3=>3-x=4-3x=>x=0,5\left(tm\right)\)

Vậy x=0,5...

d, đk \(x\ge-1\)

=>pt đã cho \(< =>9\sqrt{x+1}-6\sqrt{x+1}+4\sqrt{x+1}=12\)

\(=>7\sqrt{x+1}=12=>x+1=\dfrac{144}{49}=>x=\dfrac{95}{49}\left(tm\right)\)

Bình luận (0)
NT
10 tháng 7 2021 lúc 10:31

a) Ta có: \(\sqrt{\left(3x-1\right)^2}=5\)

\(\Leftrightarrow\left|3x-1\right|=5\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-1=5\\3x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=6\\3x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{4}{3}\end{matrix}\right.\)

b) Ta có: \(\sqrt{4x^2-4x+1}=3\)

\(\Leftrightarrow\left|2x-1\right|=3\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=3\\2x-1=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=4\\2x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

c) Ta có: \(\sqrt{x^2-6x+9}+3x=4\)

\(\Leftrightarrow\left|x-3\right|=4-3x\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=4-23x\left(x\ge3\right)\\x-3=23x-4\left(x< 3\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x+23x=4+3\\x-23x=4+3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{24}\left(loại\right)\\x=\dfrac{-4}{22}=\dfrac{-2}{11}\left(loại\right)\end{matrix}\right.\)

Bình luận (0)