Giải pt: \(\sqrt{6x-1}+\sqrt{9x^2-1}=1\)
Giải pt vô tỷ: \(\sqrt{6x-1}+\sqrt{9x^2-1}=6x-9x^2\)
Lời giải:
ĐKXĐ: \(x\geq \frac{1}{3}\)
Đặt \(\sqrt{6x-1}=a; \sqrt{9x^2-1}=b(a.b\geq 0)\). Khi đó, PT đã cho trở thành:
\(a+b=a^2-b^2\)
\(\Leftrightarrow a+b=(a-b)(a+b)\)
\(\Leftrightarrow (a+b)(a-b-1)=0\Rightarrow \left[\begin{matrix} a+b=0\\ a=b+1\end{matrix}\right.\)
Nếu $a+b=0$. Do $a,b\geq 0$ nên $a=b=0$
\(\Leftrightarrow \sqrt{6x-1}=\sqrt{9x^2-1}=0\) (vô lý)
Nếu \(a=b+1\Leftrightarrow \sqrt{6x-1}=\sqrt{9x^2-1}+1\)
\(\Rightarrow 6x-1=9x^2+2\sqrt{9x^2-1}\) (bình phương 2 vế)
\(\Leftrightarrow (3x-1)^2+2\sqrt{9x^2-1}=0\)
Vì $(3x-1)^2; \sqrt{9x^2-1}\geq 0$ nên để điều trên xảy ra thì \((3x-1)^2=\sqrt{9x^2-1}=0\Rightarrow x=\frac{1}{3}\) (thỏa mãn)
Vậy........
Lời giải:
ĐKXĐ: \(x\geq \frac{1}{3}\)
Đặt \(\sqrt{6x-1}=a; \sqrt{9x^2-1}=b(a.b\geq 0)\). Khi đó, PT đã cho trở thành:
\(a+b=a^2-b^2\)
\(\Leftrightarrow a+b=(a-b)(a+b)\)
\(\Leftrightarrow (a+b)(a-b-1)=0\Rightarrow \left[\begin{matrix} a+b=0\\ a=b+1\end{matrix}\right.\)
Nếu $a+b=0$. Do $a,b\geq 0$ nên $a=b=0$
\(\Leftrightarrow \sqrt{6x-1}=\sqrt{9x^2-1}=0\) (vô lý)
Nếu \(a=b+1\Leftrightarrow \sqrt{6x-1}=\sqrt{9x^2-1}+1\)
\(\Rightarrow 6x-1=9x^2+2\sqrt{9x^2-1}\)\(\Rightarrow 6x-1=9x^2+2\sqrt{9x^2-1}\) (bình phương 2 vế)
\(\Leftrightarrow (3x-1)^2+2\sqrt{9x^2-1}=0\)
Vì $(3x-1)^2; \sqrt{9x^2-1}\geq 0$ nên để điều trên xảy ra thì \((3x-1)^2=\sqrt{9x^2-1}=0\Rightarrow x=\frac{1}{3}\) (thỏa mãn)
Vậy........
Cách khác:
Với ĐKXĐ \(x\geq \frac{1}{3}\Rightarrow \left\{\begin{matrix} \sqrt{6x-1}\geq \sqrt{6.\frac{1}{3}-1}=1\\ \sqrt{9x^2-1}\geq 0\end{matrix}\right.\)
\(\Rightarrow \sqrt{6x-1}+\sqrt{9x^2-1}\geq 1\)
Mặt khác:
\(6x-9x^2=1-(9x^2-6x+1)=1-(3x-1)^2\leq 1, \forall x\geq \frac{1}{3}\)
Do đó:
\(\sqrt{6x-1}+\sqrt{9x^2-1}\geq 1\geq 6x-9x^2\)
Dấu "=" xảy ra khi \(\sqrt{6x-1}+\sqrt{9x^2-1}=1=6x-9x^2\)
\(\Leftrightarrow x=\frac{1}{3}\)
giải pt :
a,\(\left(6x-5\right)\sqrt{x+1}-\left(6x+2\right)\sqrt{x-1}+4\sqrt{x^2-1}=4x-3\)
b, \(\left(9x-2\right)\sqrt{3x-1}+\left(10-9x\right)\sqrt{3-3x}-4\sqrt{-9x^2+12x-3}=4\)
c, \(\left(13-4x\right)\sqrt{2x-3}+\left(4x-3\right)\sqrt{5-2x}=2+8\sqrt{-4x^2+16x-15}\)
giải pt \(\sqrt{9x^2+6x+1}=\sqrt{11-6\sqrt{2}}\)
giải pt :
\(\sqrt{2-x^2+2x}+\sqrt{-x^2-6x-8}=1+\sqrt{3}\)
\(\sqrt{9x^2-6x+2}+\sqrt{45x^2-30x+9}=\sqrt{6x-9x^2+8}\)
giúp mình vs !!!!
a) \(\sqrt{2-x^2+2x}+\sqrt{-x^2-6x-8}=1+\sqrt{3}\)
\(pt\Leftrightarrow\sqrt{-x^2+2x+1+1}+\sqrt{-x^2-6x-9+1}=1+\sqrt{3}\)
\(\Leftrightarrow\sqrt{-\left(x-1\right)^2+1}+\sqrt{-\left(x+3\right)^2+1}=1+\sqrt{3}\)
Dễ thấy: \(VT\le2< 1+\sqrt{3}=VP\) (vô nghiệm)
b)\(\sqrt{9x^2-6x+2}+\sqrt{45x^2-30x+9}=\sqrt{6x-9x^2+8}\)
\(pt\Leftrightarrow\sqrt{9x^2-6x+1+1}+\sqrt{45x^2-30x+5+4}=\sqrt{-9x^2+6x-1+9}\)
\(\Leftrightarrow\sqrt{\left(3x-1\right)^2+1}+\sqrt{5\left(3x-1\right)^2+4}=\sqrt{-\left(3x-1\right)^2+9}\)
Dễ thấy: \(VT\ge1+\sqrt{4}=3=VP\)
Đẳng thức xảy ra khi \(x=\dfrac{1}{3}\)
Giải pt:
a/ \(\frac{7}{\sqrt{7x+4}+2}+\frac{7}{\sqrt{x+1}+1}+2x-8=0\)
b/ \(2x^3+9x^2-6x\left(1+2\sqrt{6x-1}\right)+2\sqrt{6x-1}+8=0\)
pt quá vĩ đại =.= cx trên OLM lun
\(\Leftrightarrow-\left(12x\sqrt{6x-1}-2\sqrt{6x-1}-2x^3-9x^2+6x-8\right)=0\)rồi sao nx
cái này ra nghiệm là
\(2-\sqrt{2}\)và\(\sqrt{2}+2\)
1)giải pt \(x^3-9x^2+6x-6-3\sqrt[3]{6x^2+2}=0\)
2) giải hệ pt \(\int^{\sqrt{x}\left(1+\frac{3}{x+3y}\right)=2}_{\sqrt{7y}\left(1-\frac{3}{x+3y}\right)=4\sqrt{2}}\)
Bài 2 giải như sau (sau khi tác giả đã sửa): Điều kiện \(x,y>0.\)
Từ hệ ta suy ra \(1+\frac{3}{x+3y}=\frac{2}{\sqrt{x}},1-\frac{3}{x+3y}=\frac{4\sqrt{2}}{\sqrt{7y}}.\) Cộng và trừ hai phương trình, chia cả hai vế cho 2, ta sẽ được 2 phương trình \(1=\frac{1}{\sqrt{x}}+\frac{2\sqrt{2}}{\sqrt{7y}},\frac{3}{x+3y}=\frac{1}{\sqrt{x}}-\frac{2\sqrt{2}}{\sqrt{7y}}.\) Nhân hai phương trình với nhau, vế theo vế, ta được
\(\frac{3}{x+3y}=\frac{1}{x}-\frac{8}{7y}\to21xy=\left(x+3y\right)\left(7y-8x\right)\to21y^2-38xy-8x^2=0\to x=\frac{y}{2},x=-\frac{21}{4}y.\)
Đến đây ta được y=2x (trường hợp kia loại). Từ đó thế vào ta được \(1+\frac{3}{7x}=\frac{2}{\sqrt{x}}\to7x-14\sqrt{x}+3=0\to\sqrt{x}=\frac{7\pm2\sqrt{7}}{2}\to...\)
giải hệ pt : \(\left\{{}\begin{matrix}9x^3+2x+\left(y-1\right)\sqrt{1-3y}=0\\9x^2+y^2+\sqrt{5-6x}=6\end{matrix}\right.\)
giải pt:\(\sqrt{x-1}\)-\(\sqrt{2-2x}\) =\(\dfrac{6x-2}{\sqrt{9x^2+4}}\)
giải pt sau \(3-6x\sqrt{x^2-4x+1}=9x^2-8x\)