Chứng minh rằng \(n\left(2n+1\right)\times7\left(n+1\right)\)chia hết cho 6
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Chứng minh rằng n thuộc Z
\(a,\left(n+1\right)+2n\left(n+1\right)\) chia hết cho 6
\(b,\left(2n-1\right)^3-\left(2n-1\right)\) chia hết cho 8
\(b.\)\(\left(2n-1\right)^3-\left(2n-1\right)=\left(2n-1\right)\left[\left(2n-1\right)^2-1\right]\)
\(=\left(2n-1\right)\left[\left(2n-1\right)^2-1^2\right]=\left(2n-1\right)\left(2n-1-1\right)\left(2n-1+1\right)\)
\(\text{Áp dụng hằng đẳng thức }\)\(a^2-b^2=\left(a-b\right)\left(a+b\right)\)
\(=\left(2n-1\right)\left(2n-2\right).2n=\left(2n-1\right).2\left(n-1\right).2n\)
\(=\left(2n-1\right).4.n\left(n-1\right)\)
\(n\left(n-1\right)⋮2\)(vì là tích 2 số liên tiếp)
\(\Rightarrow\left(2n-1\right).4.n\left(n-1\right)⋮\left(4.2\right)=8\)
\(\left(2n-1\right).4.n\left(n-1\right)⋮8\RightarrowĐPCM\)
Chứng minh rằng với mọi số tự nhiên n ta có : \(n\left(n+1\right)\left(2n+1\right)\)Chia hết cho 6
Do n( n+1) là hai số tự nhiên liên tiếp ( n thuộc N) => n( n+1) chia hết cho 2 (1)
Do 2n chia hết cho 2 => 2n + 1 chia hết cho 3 ( 2) ( đoạn này hơi tắt)
Từ (1) và (2) => n ( n+1) ( 2n+1) chia hết cho BCNN( 2, 3) hay n( n+1) ( 2n+1) chia hết cho 6( đpcm)
k nha
Chứng minh rằng: \(n^2\left(n+1\right)+2n\left(n+1\right)\) luôn chia hết cho 6 với mọi số nguyên n.
\(n^2\left(n+1\right)+2n\left(n+1\right)\)
\(=\left(n+1\right)\left(n^2+2n\right)\)
\(=\left(n+1\right)n\left(n+2\right)\)
\(=n\left(n+1\right)\left(n+2\right)\)
vì tích của 3 số tự nhiên liên tiếp chia hết cho 6
Mặt khác n và n+1 và n+2 là 3 số tự nhiên liên tiếp
\(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\forall n\left(đpcm\right)\)
Chứng minh rằng: \(n^2\left(n+1\right)+2n\left(n+1\right)\) luôn chia hết cho 6 với mọi nguyên n.
Ta có n^2(n+1)+2n(n+1) = n^3+3n^2+2n = n(n^2+3n+2) = n(n+1)(n+2)
Ta thấy n, n+1, n+2 là ba số nguyên liên tiếp với n nguyên
=> trong 3 số n, n+1, n+2 có một số chia hết cho 3, có ít nhất một số chia hết cho 2
=> n(n+1)(n+2) chia hết cho 2*3 = 6 (vì ƯCLN(2;3)=1)
=> đpcm
\(n^2\left(n+1\right)+2n\left(n+1\right)\)
\(=>\left(n+1\right)\left(n^2+2n\right)\)
\(=>n\left(n+1\right)\left(n+2\right)\)
Ta thấy \(n;\left(n+1\right);\left(n+2\right)\)là 3 số tự nhiên liên tiếp
Mà tích của 3 số tn liên tiếp luôn chia hết cho 6
=> \(n^2\left(n+1\right)+2n\left(n+1\right)\)chia hết ch 6 ( đpcm )
Cấm ai chép ...............
Chứng minh rằng \(A=\left(n-1\right)\left(3-2n\right)-n\left(n+5\right)\)chia hết cho 3 với mọi n
\(A=\left(n-1\right)\left(3-2n\right)-n\left(n+5\right)\)
\(=3n-2n^2-3+2n-\left(n^2+5n\right)\)
\(=3n-2n^2-3+2n-n^2-5n\)
\(=\left(3n-5n+2n\right)-\left(2n^2-n^2\right)-3\)
\(=-3\)
\(\Rightarrowđpcm\)
\(A=\left(n-1\right)\left(3-2n\right)-n\left(n+5\right) \)
\(=3n-2n^2-3+2n-\left(n^2+5n\right)\)
\(=3n-2n^2-3+2n-n^2-5n\)
\(=-3n^2-3\)
\(=3\left(-n^2-1\right)\)
Mà \(3\left(-n^2-1\right)⋮3\)
Vậy \(A⋮3\forall n\)
Chứng minh: \(n^2\left(n+1\right)+2n\left(n+1\right)\) chia hết cho 6
Ta có: \(n^2\left(n+1\right)+2n\left(n+1\right)\)
\(=\left(n+1\right)\left(n^2+2n\right)\)
\(=n\left(n+1\right)\left(n+2\right)\)
Vì n,(n+1),(n+2) là 3 số lên tiếp nên chúng luôn chia hết cho 6
Chứng minh rằng biểu thức \(n\left(2n-3\right)-2n\left(n+1\right)\)luôn chia hết cho 5 với mọi số nguyên n
n(2n-3)-2n(n+1)
=2n^2-3n-2n^2-2n
=-5n
-5n chia het cho 5 voi moi so nguyên n vi -5 chia het cho 5
vay n(2n-3)-2n(n+1) chia het cho 5
Chứng minh rằng biểu thức \(n\left(2n-3\right)-2n\left(n+1\right)\) luôn chia hết cho 5 với mọi số nguyên n ?
Ta có: \(n\left(2n-3\right)-2n\left(n+1\right)\) = \(2n^2-3n-2n^2-2n\)
= \(-5n\)
Vì \(-5⋮5\) => -5n \(⋮\) 5
=> \(n\left(2n-3\right)-2n\left(n+1\right)\) \(⋮\) 5 với mọi n \(\in\) Z
n(2n-3)-2n(n+1)=2n2-3n+2n2-2n=-5n \(⋮\) 5 với mọi n
chứng minh rằng :
\(35^{25}-35^{24}\) chia hết cho 17
bài 2 : chứng minh rằng :
\(n\left(2n-3\right)-2n\left(n+1\right)\) chia hết cho 5 với mọi số nguyên