tìm cặp số nguyên tố x,y
a,x+y=3xy
b,x (y+3)+y=1
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
1) Tìm số nguyên tố p để p+2 và p+10 đều nhận giá trị là các số nguyên tố.
2) Tìm cặp số tự nhiên (x ; y) thỏa mãn x ×(y — 1) = 5 × y — 12
tìm tất cả các cặp số nguyên dương x,y với x,y nguyên tố cùng nhau và thỏa mãn phương trình 2*(x3 - x)= y3 - y
a) Tìm cặp số nguyên (x;y) thỏa mãn:x-y-6=2xy
b) Tìm mọi số nguyên tố x,y thỏa mãn: x2- 2y2=1
Tìm các cặp số nguyên tố (x,y) thỏa mãn x^2-2.y^2=1
1) Cho hai số nguyên dương x,y lớn hơn 1, x khác y thỏa mãn \(x^2+y-1⋮y^2+x-1.\). Chứng minh rằng \(y^2+x-1\)không thể là lũy thừa của 1 số nguyên tố.
2) Tồn tại không các số nguyên dương x, y sao cho \(x^5+4^y\)là lũy thừa của 11.
3)Tìm tất cả các cặp số (x,y) nguyên dương thỏa mãn \(x^3-y^3=13\left(x^2+y^2\right)\)
4)Tìm tất cả các số nguyên dương n thỏa mãn \(n^5+n+1\)là lũy thừa của số nguyên tố.
5)Cho 2 số nguyên dương x,y thỏa mãn \(2x^2+11xy+12y^2\)là lũy thừa của số nguyên tố. Chứng minh rằng x=y.
6)Tìm tất cả các số nguyên tố p sao cho \(\frac{p+1}{2}\)và\(\frac{p^2+1}{2}\)đều là số chính phương.
7)Tìm tất cả các cặp số nguyên dương p, q với p nguyên tố thỏa mãn \(p^3+p^2+6=q^2+q\)
Chứng minh rằng tồn tại duy nhất cặp số (x; y) thoả mãn:\(x^2-2y^2=1\)(với x, y là các số nguyên tố). Tìm cặp số (x; y) đó
\(Giải.\)
\(x^2-2y^2=1\Leftrightarrow x^2-1=2y^2\Leftrightarrow\left(x+1\right)\left(x-1\right)=2y^2\left(chẵn\right)\)
Dễ thấy: x+1-(x-1)=2 nên 2 số trên cùng chẵn hoặc cùng lẻ=> 2 số trên cùng chẵn
=> 2y2 chia hết cho 4=>y2 chia hết cho 2
=> y chẵn =>y=2=>x2-8=1=>x=3 (thỏa mãn)
Vậy chỉ có duy nhất 1 cặp: (x,y)=(3;2) thỏa mãn
Dễ thấy: x+1-(x-1)=2 nên 2 số trên cùng chẵn hoặc cùng lẻ=> 2 số trên cùng chẵn
=> 2y2 chia hết cho 4=>y2 chia hết cho 2
=> y chẵn =>y=2=>x2-8=1=>x=3 (thỏa mãn)
Vậy chỉ có duy nhất 1 cặp: (x,y)=(3;2) thỏa mãn
1.Tìm số nguyên x
a,2x-5 chia hết cho x-1
b,3x+4 chia hết cho x-3
c,x-2 là ước của x2+8
2,Tìm x=Z
a,3x+2 chia hết cho x-1
b,x2+2x-7 chia hết cho x+2
3,Tìm cặp số nguyên x,y
a,(x-1).(y+1)=5
b,x.(y+2)= -8
Làm ơn mn giải nhanh giúp mình ngày mai mình phải nộp r!
Bài 1:
a: \(\Leftrightarrow x-1\in\left\{1;-1;3;-3\right\}\)
hay \(x\in\left\{2;0;4;-2\right\}\)
CMR: tồn tại duy nhất một cặp (x;y) thỏa mãn:\(x^2-2y^2\)=1, với x,y là số nguyên tố .tìm cặp số (x;y) đó
tìm các cặp số nguyên tố (x,y) thỏa mãn: x2-2.y2 = 1
x2-2y2=1
xét y=2=>x2=1+2.22=9=32
=>x=3(t/mãn)
xét y=3=>x2=32.2+1=19(loại)
xét y>3
=>y không chia hết cho 3
=>y2 chia 3 dư 1
=>2y2 chia 3 dư 2
=>x2 chia hết cho 3
=>x chia hết cho 3
=>x là hợp số(trái giả thuyết)
=>x=3;y=2
Vậy (x;y)=(3;2)