Cho mình hỏi bất đẳng thức AM-GM là gì vậy mọi người
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Mọi người cho mình biết bất đẳng thức AM-GM được ko?
mình copy trên google nè:Bất đẳng thức này ở VN gọi là bđt Cô-si (Cauchy) còn ở Mỹ gọi như trong tựa bài, hay gọi tắt là AM-GM inequality (arithmetic mean - geometric mean)
giúp mình bài này với ( gợi ý : dùng bất đẳng thức AM GM)
cho mình hỏi về bất đẳng thức AM-Gm, Cô-si và Cauchy nó có phải là 1 không
Bất đẳng thức Cauchy - Schwars
Bất đẳng thức AM - GM
Bất đẳng thức Bunhiacopxki
Bất đẳng thức Mincopxki
Cho tớ công thức của các BĐT trên , giúp với@Ace Legona
C-S với Bunhia là 1 và là 1 trg hợp của Holder dạng 2 số \(\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(ax+by\right)^2\)
AM-GM ng` việt gọi là cô si dạng 2 số \(a^2+b^2\ge2ab\)
Mincopski dạng 2 số \(\sqrt{a^2+b^2}+\sqrt{x^2+y^2}\ge\sqrt{\left(a+x\right)^2+\left(b+y\right)^2}\)
* BĐT Cauchy - Schwars = BĐT Bunhiacopxki
- Thông thường :
( a2 + b2 )(c2 + d2 ) \(\ge\left(ac+bd\right)^2\)
Dấu "=" xảy ra tại : \(\dfrac{a}{c}=\dfrac{b}{d}\)
- Tổng quát với các bộ số : a1 , a2 , a3 , ... , an và : b1 , b2 , ... , bn
(a12 + a22 + ... + an2)(b12 + b22 + ... + bn2 ) \(\ge\left(a_1b_1+a_2b_2+...+a_nb_n\right)\)
Dấu "=" xảy ra tại : \(\dfrac{a_1}{b_1}=\dfrac{a_2}{b_2}=...=\dfrac{a_n}{b_n}\)
* BĐT AM-GM
- trung bình nhân (2 số)
với a,b \(\ge0\) , ta luôn có : \(\dfrac{a+b}{2}\ge\sqrt{ab}\) . Dấu "=" xảy ra tại a=b
- Trung bình nhân ( n số )
Với x1 , x1 , x3 ,..., xn \(\ge0\)
Ta luôn có : \(\dfrac{x_1+x_2+...+x_n}{n}\ge\sqrt[n]{x_1x_2.....x_n}\)
Dấu "=" xảy ra khi x1 = x2 =...=xn
-Trung bình hệ số :
Với các bộ số : x1 , x1 , x3 ,..., xn \(\ge0\)và a1, a2 , a3 ,... , an ( a1 , a2 ,..., an) là c1ác hệ số
Ta có : \(\dfrac{a_1x_1+a_2x_2+...+a_nx_n}{a}\ge\sqrt[a]{x_1^{a_1}.x_2^{a_2}.....x_n^{a_n}}\)
Dấu "=" xảy ra khi x1 = x2 = xn
=================
Cái mincopxki t ko biết , ngoài ra còng có BĐT Cauchy - dạng engel => lên googl seach có
Nêu bất đẳng thức AM-GM.
Bạn vào link sau tham khảo :
Bất đẳng thức trung bình cộng và trung bình nhân – Wikipedia tiếng Việt
Hk tốt
.
AM-GM là viết tắt của từ arithme and geometric means, nghĩa là trung bình cộng và trung bình nhân, bất đẳng thức AM-GM được phát biểu như sau:
(a1 + a2 + a3 + ...... + an) / n = căn bậc n của (a1*a2*a3*….*an)
Cách chứng minh hay nhất của nó là sử dụng phương pháp quy nạp Cô-si nên nhiều người lầm tưởng rằng Cô-si phát hiện ra bđt này. Tên gọi bđt Cô-si được sử dụng trong hầu hết các tài liệu của VN, sai nhiều quá, thâm niên nên không sửa được, vì vậy chúng ta vẫn quen gọi nó là bđt Cô-si theo như sgk. Tên gọi bđt AM-GM là tên gọi chuẩn được quốc tế sử dụng.
Cũng giống như vậy, bđt ta hay gọi là Bunhiacovski là phát minh của 3 nhà toán học Schwart (Svác), Bunhiacovski và Cauchy (Cô-si), và tên gọi chuẩn quốc tế của nó là bđt Cauchy- Schwart.
Tập số N₀ là kí hiệu thường để chỉ tập các số nguyên không âm, để phân biệt với tập số tự nhiên N. Theo quy ước của IMU, tập số tự nhiên N không chứa số 0, tức là tập số nguyên dương (bằng với tập N* của Việt Nam). Tuy nhiên, ở nước ta, tập số tự nhiên N vẫn bao gồm số 0, vì thế phải “mọc” thêm tập N* ý chỉ tập số nguyên dương.
R+ là tập các số thực dương (quy ước IMU). Trong trường phái toán châu Âu (tiêu biểu là Pháp), nó có thể để chỉ tập các số thực không âm.
C là tập các số phức. (cái này miễn bàn)
Bất đẳng thức AM-GM hay bất đẳng thức Cô-si là bất đẳng thức so sánh giữa trung bình cộng và trung bình nhân của n số thực không âm được phát biểu như sau :
Trung bình cộng của n số thực không âm luôn lớn hơn hoặc bằng trung bình nhân của chúng, và trung bình cộng chỉ bằng trung bình nhân khi và chỉ khi n số đó bằng nhau.
Với 2 số :\(\frac{a+b}{2}\ge\sqrt{ab}\)Dấu "=" xảy ra khi và chỉ khi \(a=b\)Với n số :\(\frac{x_1+x_2+x_3+...+x_n}{n}\ge\sqrt[n]{x_1\cdot x_2\cdot x_3\cdot...\cdot x_n}\left(n\inℕ^∗\right)\)Dấu "=" xảy ra khi và chỉ khi \(x_1=x_2=x_3=...=x_n\).Cho mình hỏi là từ "tươi tắn" là từ ghép đẳng lập hay từ ghép chính phụ vậy mọi người?
Đăk lập là sai chính phụ cx sai ( gà mới cho chính phụ là đúng)
- Từ Chính Phụ
- Học tốt ạ! =D
Từ "tươi tắn" là từ ghép chính phụ nha!
# Học tốt #
mọi người cho em hỏi là thi vào 10 có được dùng các bất đẳng thức như cauchy mà ko cần chứng minh không ạ?
Cái này thì tùy nơi nha bạn. Nhưng nếu làm bài chuyên thì cứ chơi cái này thoải mái, tại vì nguyên tắc làm bài chuyên là được dùng bất cứ kiến thức gì, miễn là làm được bài thì thôi. Còn nếu thi đề thường thì chỉ được dùng những BĐT quen thuộc thôi nha bạn
Các bạn ơi cho mình hỏi bất đẳng thức a2 + b2 >= \(\frac{\left(a+b\right)^2}{2}\) tên là gì vậy?
Thanks các bạn nhiều :3