Tìm x biết 2x^3 + 3x^2 +6x +4 =0
tìm x biết
a/x^3+3x^2+3x+2=0
b/x^4-2x^3+2x-1=0
c/x^4-3x^3-6x^2+8x=0
a) \(x^3+3x^2+3x+2=0\)
<=> \(x^3+x^2+x+2x^2+2x+2=0\)
<=> \(x\left(x^2+x+1\right)+2\left(x^2+x+1\right)=0\)
<=> \(\left(x+2\right)\left(x^2+x+1\right)=0\)
tự làm
b) \(x^4-2x^3+2x-1=0\)
<=> \(\left(x^4-3x^3+3x^2-x\right)+\left(x^3-3x^2+3x-1\right)=0\)
<=> \(x\left(x^3-3x^2+3x-1\right)+\left(x^3-3x^2+3x-1\right)=0\)
<=> \(\left(x^3-3x^2+3x-1\right)\left(x+1\right)=0\)
<=> \(\left(x-1\right)^3\left(x+1\right)=0\)
tự làm
c) \(x^4-3x^3-6x^2+8x=0\)
<=> \(x\left(x^3-3x^2-6x+8\right)=0\)
<=> \(x\left[\left(x^3+x^2-2x\right)-\left(4x^2+4x-8\right)\right]=0\)
<=>\(x\left[x\left(x^2+x-2\right)-4\left(x^2+x-2\right)\right]=0\)
<=> \(x\left(x-4\right)\left(x^2+x-2\right)=0\)
<=> \(x\left(x-4\right)\left(x-1\right)\left(x+2\right)=0\)
tự làm
Tìm x biết: (x+2)^3-x^2(x-6)-4=0 6x^2-(2x-3)(3x+2)=1
\(\left(x+2\right)^3-x^2\left(x-6\right)-4=0\\ \Leftrightarrow x^3-6x^2+12x-8-x^3+6x^2-4=0\\ \Leftrightarrow12x-12=0\\ \Leftrightarrow12x=12\\ \Leftrightarrow x=1\)
\(6x^2-\left(2x-3\right)\left(3x+2\right)=1\\ \Leftrightarrow6x^2-\left[3x.\left(2x-3\right)+2.\left(2x-3\right)\right]=1\\ \Leftrightarrow6x^2-\left(6x^2-9x+4x-6\right)=1\\ \Leftrightarrow6x^2-\left(6x^2-5x-6\right)=1\\ \Leftrightarrow6x^2-6x^2+5x+6=1\\ \Leftrightarrow5x=-5\\ \Leftrightarrow x=-1\)
Tìm x biết
1. 2(5x-8)-3(4x-5)=4(3x-4)+11
2. (2x+1)2-(4x-1).(x-3)-15=0
3. (3x-1).(2x-7)-(1-3x).(6x-5)=0
1) \(\Rightarrow10x-16-12x+15=12x-16+11\)
\(\Rightarrow14x=4\Rightarrow x=\dfrac{2}{7}\)
2) \(\Rightarrow4x^2+4x+1-4x^2+13x-3-15=0\)
\(\Rightarrow17x=17\Rightarrow x=1\)
3) \(\Rightarrow\left(3x-1\right)\left(2x-7+6x-5\right)=0\)
\(\Rightarrow\left(2x-3\right)\left(3x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)
2: Ta có: \(\left(2x+1\right)^2-\left(4x-1\right)\left(x-3\right)-15=0\)
\(\Leftrightarrow4x^2+4x+1-4x^2+12x+x-3-15=0\)
\(\Leftrightarrow17x=17\)
hay x=1
Tìm x, biết :
a. 3x(x-2)-x+2=0
b. 4x(x-3)-2x+6=0
c. 2x(x-4)+x-4=0
d. 2x³+4x=0
e. 3x³-6x=0
a. 3x(x-2)-x+2=0
3x(x-2)-(x-2)=0
(3x-1)(x-2)=0
=>\(\hept{\begin{cases}3x-1=0\\x-2=0\end{cases}}\)
=> \(\hept{\begin{cases}3x=1\\x=2\end{cases}}\)
=>\(\hept{\begin{cases}x=\frac{1}{3}\\x=2\end{cases}}\)
vậy x thuộc (1/3;2)
b. 4x(x-3)-2x+6=0
4x(x-3) -2(x-3)=0
(4x-2)(x-3)
=>*4x-2=0
4x=2
x=1/2
*x-3=0
x=3
vậy x thuộc (1/2;3)
a. 3x(x-2)-x+2=0
=>(x-2)(3x-1)=0
=>x-2=0 hoặc 3x-1=0
*x-2=0=>x=2
*3x-1=0=>x=\(\frac{1}{3}\)
Vậy x=2;x=\(\frac{1}{3}\)
b. 4x(x-3)-2x+6=0
=>(x-3)(4x-2)=0
=>(x-3)=0 hoặc 4x-2=0
*x-3=0=>x=3
*4x-2=0=>\(\frac{1}{2}\)
Vậy x=3; x=\(\frac{1}{2}\)
câu c, d,e thì chút nx mk gửi cho nha
Tìm x biết
a) -2x(2-3x)+3(-5+7x-6x2)= -4
b) -3x(-1+3x-4x2)+6x2(-2x+3)= 0
\(a,-2x\left(2-3x\right)+3\left(-5+7x-6x^2\right)=-4\)
\(\Rightarrow-4x+6x^2-15+21x-18x^2=-4\)
\(\Rightarrow-12x^2+17x-11=0\)
\(\Rightarrow12x^2-17x+11=0\)
\(\Rightarrow9x^2-2.3.\frac{17}{6}x+\left(\frac{17}{6}\right)^2-\left(\frac{17}{6}\right)^2+11=0\)
\(\Rightarrow\left(3x-\frac{17}{6}\right)^2+\frac{107}{36}=0VN\)
Không có gt x thỏa mãn
\(b,-3x\left(-1+3x-4x^2\right)+6x^2\left(-2x+3\right)=0\)
\(\Rightarrow3x-9x^2+12x^3-12x^3+18x^2=0\)
\(\Rightarrow9x^2+3x=0\)
\(\Rightarrow3x\left(3x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x=0\\3x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\3x=-1\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=-\frac{1}{3}\end{cases}}}\)
hfjjfjfjfrtrf
tìm x biết
a) (6x-3) (2x+4) + (4x-1) (5-3x) = -21
b) 6x (3x+5) - 2x (9x-2) + (17-x) (x-1) + x (x-18) =0
c) (15-2x) (4x+1) - (13-4x) (2x-3) - (x-1) (x+2) + x2=52
d) (8x-3) (3x+2) - (4x+7) (x+4) = (2x+1) (5x-1) - 33
Rút gọn hết ta được :
a/ 41x - 17 = -21
=> 41x = -4 => x = 4/41
b/ 34x - 17 = 0
=> 34x = 17
=> x = 17/34 = 1/2
c/ 19x + 56 = 52
=> 19x = -4
=> x = -4/19
d/ 20x2 - 16x - 34 = 10x2 + 3x - 34
=> 10x2 - 19x = 0
=> x(10x - 19) = 0
=> x = 0
hoặc 10x - 19 = 0 => 10x = 19 => x = 19/10
Vậy x = 0 ; x = 19/10
Rút gọn hết ta được :
a/ 41x - 17 = -21
=> 41x = -4 => x = 4/41
b/ 34x - 17 = 0
=> 34x = 17
=> x = 17/34 = 1/2
c/ 19x + 56 = 52
=> 19x = -4
=> x = -4/19
d/ 20x 2 - 16x - 34 = 10x 2 + 3x - 34
=> 10x 2 - 19x = 0
=> x(10x - 19) = 0
=> x = 0 hoặc 10x - 19 = 0
=> 10x = 19
=> x = 19/10
Vậy x = 0 ; x = 19/10
a) ( 6x - 3 ) ( 2x + 4 ) + ( 4x - 1 ) ( 5 - 3x ) = -21
<=> 12x2 + 24x - 6x - 12 + 20x - 12x2 - 5 + 3x = -21
<=> 41x = -21 + 12 + 5
<=> 41x = -4
<=> x = -4/41
tìm x
x^3 -2x^2+x-2=0
2x(3x-5)=10-6x
4-x=2(x-4)^2
4-6x+x(3x-2)=0
\(x^3-2x^2+x-2=0\\ \Leftrightarrow x^2\left(x-2\right)+\left(x-2\right)=0\\ \Leftrightarrow\left(x^2+1\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2+1=0\\x-2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x^2=-1\left(vô.lí\right)\\x=2\end{matrix}\right.\\ Vậy:x=2\\ ---\\ 2x\left(3x-5\right)=10-6x\\ \Leftrightarrow6x^2-10x-10+6x=0\\ \Leftrightarrow6x^2-4x-10=0\\ \Leftrightarrow6x^2+6x-10x-10=0\\ \Leftrightarrow6x\left(x+1\right)-10\left(x+1\right)=0\\ \Leftrightarrow\left(6x-10\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}6x-10=0\\x+1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=-1\end{matrix}\right.\)
\(4-x=2\left(x-4\right)^2\\ \Leftrightarrow4-x=2\left(x^2-8x+16\right)\\ \Leftrightarrow2x^2-16x+32+x-4=0\\ \Leftrightarrow2x^2-15x+28=0\\ \Leftrightarrow2x^2-8x-7x+28=0\\ \Leftrightarrow2x\left(x-4\right)-7\left(x-4\right)=0\\ \Leftrightarrow\left(2x-7\right)\left(x-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x-7=0\\x-4=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=4\end{matrix}\right.\\ ---\\ 4-6x+x\left(3x-2\right)=0\\ \Leftrightarrow4-6x+3x^2-2x=0\\ \Leftrightarrow3x^2-8x+4=0\\ \Leftrightarrow3x^2-6x-2x+4=0\\ \Leftrightarrow3x\left(x-2\right)-2\left(x-2\right)=0\\ \Leftrightarrow\left(3x-2\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}3x-2=0\\x-2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=2\end{matrix}\right.\)
tìm x biết
a/x^3+3x^2+3x+2=0
b/x^4-2x^3+2x-1=0
c/x^4-3x^3-6x^2+8x=0
a ) \(x^3+3x^2+3x+2=0\)
\(\Leftrightarrow x^3+3x^2+3x+1+1=0\)
\(\Leftrightarrow\left(x+1\right)^3+1=0\)
\(\Leftrightarrow\left(x+1\right)^3=-1\)
\(\Leftrightarrow x+1=-1\)
\(\Leftrightarrow x=-2\)
Vậy \(x=-2\)
b ) \(x^4-2x^3+2x-1=0\)
\(\Leftrightarrow x^4-1-2x\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2+1-2x\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)^3\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)^3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
a, \(x^3+3x^2+3x+2=0\)
\(\Leftrightarrow\left(x^3+2x^2\right)+\left(x^2+2x\right)+\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2+x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x^2+x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=0\end{matrix}\right.\)
b, \(x^4-2x^3+2x-1=0\)
\(\Leftrightarrow\left(x^4-x^3\right)-\left(x^3-x^2\right)-\left(x^2-x\right)+\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[\left(x^3-x^2\right)\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)^3=0\)
\(\Leftrightarrow x=1\)
a ) x^3+3x^2+3x+2=0x3+3x2+3x+2=0
\Leftrightarrow x^3+3x^2+3x+1+1=0⇔x3+3x2+3x+1+1=0
\Leftrightarrow\left(x+1\right)^3+1=0⇔(x+1)3+1=0
\Leftrightarrow\left(x+1\right)^3=-1⇔(x+1)3=−1
\Leftrightarrow x+1=-1⇔x+1=−1
\Leftrightarrow x=-2⇔x=−2
Vậy x=-2x=−2
b ) x^4-2x^3+2x-1=0x4−2x3+2x−1=0
\Leftrightarrow x^4-1-2x\left(x^2-1\right)=0⇔x4−1−2x(x2−1)=0
\Leftrightarrow\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)=0⇔(x2−1)(x2+1)−2x(x2−1)=0
\Leftrightarrow\left(x^2-1\right)\left(x^2+1-2x\right)=0⇔(x2−1)(x2+1−2x)=0
\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-1\right)^2=0⇔(x−1)(x+1)(x−1)2=0
\Leftrightarrow\left(x-1\right)^3\left(x+1\right)=0⇔(x−1)3(x+1)=0
\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)^3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x=-1\end{matrix}\right.⇔[(x−1)3=0x+1=0⇔[x−1=0x=−1
\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.⇔[x=1x=−1
Vậy \left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.[x=1x=−1
I) THỰC HIỆN PHÉP TÍNH a) 2x(x^2-4y) b)3x^2(x+3y) c) -1/2x^2(x-3) d) (x+6)(2x-7)+x e) (x-5)(2x+3)+x II phân tích đa thức thành nhân tử a) 6x^2+3xy b) 8x^2-10xy c) 3x(x-1)-y(1-x) d) x^2-2xy+y^2-64 e) 2x^2+3x-5 f) 16x-5x^2-3 g) x^2-5x-6 IIITÌM X BIẾT a)2x+1=0 b) -3x-5=0 c) -6x+7=0 d)(x+6)(2x+1)=0 e)2x^2+7x+3=0 f) (2x-3)(2x+1)=0 g) 2x(x-5)-x(3+2x)=26 h) 5x(x-1)=x-1 IV TÌM GTNN,GTLN. a) tìm giá trị nhỏ nhất x^2-6x+10 2x^2-6x b) tìm giá trị lớn nhất 4x-x^2-5 4x-x^2+3
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
\(\left(x+6\right)\left(2x+1\right)=0\)
<=> \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)
Vậy....
hk tốt
^^