Cho \(a,b\ge0\)thỏa mãn a+b=2 Tìm GTNN,GTLN của
\(M=a\sqrt{b+1}+b\sqrt{a+1}\)
cho a,b,c \(\ge0\)thỏa mãn: a2+b2+c2=1. Tìm GTLN,GTNN của biểu thức: A=\(\sqrt{a+b^2}+\sqrt{b+c^2}+\sqrt{c+a^2}\)
Cho các số thực không âm a, b, c thay đổi thỏa mãn \(a^2+b^2+c^2=1\). Tìm GTLN và GTNN của biểu thức \(Q=\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\)
Tham khảo:
Với các số thực không âm a,b,c thỏa mãn \(a^2+b^2+c^2=1\), tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức: \(Q=\s... - Hoc24
#Chuyên mục bất đẳng thức khởi động bước vào năm học mới#
Bài toán 41: Cho a, b, c là các số thực dương thỏa mãn\(a+b-c\ge0;b+c-a\ge0;c+a-b\ge0\)và \(\left(a+b+c\right)^2=4\left(ab+bc+ca-1\right)\)
Tìm GTNN của biểu thức \(S=\sqrt{\frac{a+b}{c}-1}+\sqrt{\frac{b+c}{a}-1}+\sqrt{\frac{c+a}{b}-1}+\frac{2\sqrt{2}}{\sqrt{a^2+b^2+c^2-2}}\)
Bài toán 46: Cho 3 số thực dương a, b, c thỏa mãn\(\sqrt{a-c}+\sqrt{b-c}=\sqrt{\frac{ab}{c}}\)
Tìm GTNN của biểu thức \(P=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+\frac{c^2}{a^2+b^2}\)
Bài toán số 41 có 2 cách làm, tôi làm cách thứ 2
Đặt \(Q=\sqrt{\frac{x}{y+z}}+\sqrt{\frac{y}{x+z}}+\sqrt{\frac{z}{x+y}}\)\(\Rightarrow Q^2=\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}+2\left(\sqrt{\frac{xy}{\left(y+z\right)\left(x+z\right)}}+\sqrt{\frac{yz}{\left(x+z\right)\left(y+z\right)}}+\sqrt{\frac{xz}{\left(x+y\right)\left(y+z\right)}}\right)\)ta thấy rằng \(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}=\frac{1}{4}\left(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\right)\left(xy+yz+zx\right)\)
\(=\frac{x^2+y^2+z^2}{4}+\frac{xyz}{4}\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\ge\frac{x^2+y^2+z^2}{4}\)
Áp dụng bất đẳng thức AM-GM ta có \(\sqrt{\frac{yx}{\left(z+x\right)\left(x+y\right)}}\ge\frac{2yx}{2\sqrt{\left(xy+yz\right)\left(yz+yx\right)}}\ge\frac{2xy}{2xy+yz+xz}\ge\frac{2xy}{2\left(xy+yz+zx\right)}=\frac{xy}{xy+yz+zx}\)
Tương tự ta có \(\hept{\begin{cases}\sqrt{\frac{yz}{\left(z+x\right)\left(z+y\right)}}\ge\frac{yz}{xy+yz+zx}\\\sqrt{\frac{xz}{\left(x+y\right)\left(y+z\right)}}\ge\frac{xz}{xy+yz+zx}\end{cases}}\)
\(\Rightarrow\sqrt{\frac{xy}{\left(y+z\right)\left(z+x\right)}}+\sqrt{\frac{yz}{\left(z+x\right)\left(x+y\right)}}+\sqrt{\frac{zx}{\left(x+y\right)\left(y+z\right)}}\ge1\)nên \(Q\ge\sqrt{\frac{x^2+y^2+z^2}{4}+2}\)
\(\Rightarrow Q\ge\sqrt{\frac{x^2+y^2+z^2}{2}+4}+\frac{4}{\sqrt{x^2+y^2+z^2}}\)
Đặt \(t=\sqrt{x^2+y^2+z^2}\Rightarrow t\ge\sqrt{xy+yz+zx}=2\)
Xét hàm số g(t)=\(\sqrt{\frac{t^2}{2}+4}+\frac{4}{t}\left(t\ge2\right)\)khi đó ta có
\(g'\left(t\right)=\frac{t}{2\sqrt{\frac{t^2}{2}+4}}-\frac{4}{t^2};g'\left(t\right)=0\Leftrightarrow t^6-32t^2-256=0\Leftrightarrow t=2\sqrt{2}\)
Lập bảng biến thiên ta có min[2;\(+\infty\)) \(g\left(t\right)=g\left(2\sqrt{2}\right)=3\sqrt{2}\)
Hay minS=\(3\sqrt{2}\)<=> a=c=1; b=2
Đặt a=xc; b=cy (x;y >=1)
Thay x=1 vào giả thiết ta có \(\sqrt{b-c}=\sqrt{b}\Rightarrow c=0\) (không thỏa mãn vì c>0)Thay y=1 vào giả thiết ta có \(\sqrt{a-c}=\sqrt{a}\Rightarrow c=0\)( không thỏa mãn vì c>0)Xét x,y>1 thay vào giả thiết ta có\(\sqrt{x-1}+\sqrt{y-1}=\sqrt{xy}\Leftrightarrow x+y-2+2\sqrt{\left(x-1\right)\left(y-1\right)}=xy\)
\(\Leftrightarrow xy-x-y+1-2\sqrt{\left(x-1\right)\left(y-1\right)}+1=0\)
\(\Leftrightarrow\left(\sqrt{\left(x-1\right)\left(y-1\right)}-1\right)^2=0\)
\(\Leftrightarrow\sqrt{\left(x-1\right)\left(y-1\right)}=1\Leftrightarrow xy=x+y\ge2\sqrt{xy}\Rightarrow xy\ge4\)
Biểu thức P được viết lại như sau
\(P=\frac{x}{y+1}+\frac{y}{x+1}+\frac{1}{x+y}+\frac{1}{x^2+y^2}=\frac{x^2}{xy+x}+\frac{y^2}{xy+y}+\frac{1}{x^2+y^2}+\frac{1}{\left(x+y\right)^2-2xy}\)
\(P\ge\frac{\left(x+y\right)^2}{2xy+x+y}+\frac{1}{x+y}+\frac{1}{\left(x+y\right)^2-2xy}=\frac{xy}{3}+\frac{1}{xy}+\frac{1}{x^2y^2-2xy}=\frac{x^3y^3-2x^2y^2+3xy-3}{3\left(x^2y^2-2xy\right)}\)
Đặt t=xy với t>=4
Xét hàm số \(f\left(t\right)=\frac{t^3-2t^2+3t-3}{t^2-2t}\left(t\ge4\right)\)
Ta có \(f'\left(t\right)=\frac{t^4-4t^3+t^2+6t-6}{\left(t^2-2t\right)^2}=\frac{t^3\left(t-4\right)+6\left(t-4\right)+18}{\left(t^2-2t\right)^2}>0\forall t\ge4\)
Lập bảng biến thiên ta có \(minf\left(t\right)=f\left(4\right)=\frac{41}{8}\)
Vậy \(minP=\frac{41}{24}\)khi x=y=z=2 hay a=b=2c
Cho \(a,b,c\ge0,a+b+c=3\).Tìm GTNN và GTLN:
\(P=a\sqrt{b^3+1}+b\sqrt{c^3+1}+c\sqrt{a^3+1}\)
Cho a và b không âm thỏa mãn a3 + b3 + ab = a2 + b2. Tìm GTNN và GTLN của
\(P=\frac{1+\sqrt{a}}{2+\sqrt{b}}+\frac{2+\sqrt{a}}{1+\sqrt{b}}\)
cho \(a,b,c\ge0\)thỏa mãn \(a^2+b^2+c^2=3\)
Tìm GTNN của:
\(P=\frac{a^3}{\sqrt{1+b^2}}+\frac{b^3}{\sqrt{1+c^2}}+\frac{c^3}{\sqrt{1+a^3}}\)
Cho \(a\ge0,b\ge0\) và thỏa mãn \(a+b=1\). Tìm giá trị nhỏ nhất của biểu thức: \(P=\sqrt{1+2a}+\sqrt{1+2b}\)
Lời giải:
Ta có:
$P^2=2+2(a+b)+2\sqrt{(1+2a)(1+2b)}=2+2+2\sqrt{1+2(a+b)+4ab}$
$=4+2\sqrt{3+4ab}$
Vì $a,b\geq 0$ nên $\sqrt{3+4ab}\geq \sqrt{3}$
$\Rightarrow P^2\geq 4+2\sqrt{3}$
$\Rightarrow P\geq \sqrt{3}+1$
Vậy $P_{\min}=\sqrt{3}+1$. Giá trị này được khi $(a,b)=(1,0)$ và hoán vị.
Cho a,b,c dương thỏa mãn : \(a+b+c\le3\)
Tìm GTLN của biểu thức
\(B=\sqrt{1+a^2}+\sqrt{1+b^2}+\sqrt{1+c^2}+2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)
Ta có \(\sqrt{1+a^2}+\sqrt{2a}\le\sqrt{2\left(1+a^2+2a\right)}=\sqrt{2}\left(a+1\right)\).
Tương tự \(\sqrt{1+b^2}+\sqrt{2b}\le\sqrt{2}\left(b+1\right)\); \(\sqrt{1+c^2}+\sqrt{2c}\le\sqrt{2}\left(c+1\right)\).
Lại có \(\left(2-\sqrt{2}\right)\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\le\left(2-\sqrt{2}\right)\sqrt{3\left(a+b+c\right)}\le3\left(2-\sqrt{2}\right)\).
Do đó \(B\le\sqrt{2}\left(a+b+c+3\right)+3\left(2-\sqrt{2}\right)\le6\sqrt{2}+6-3\sqrt{2}=3\sqrt{2}+6\).
Dấu "=" xảy ra khi a = b = c = 1.
Cho a, b là các số thực không âm thỏa mãn: \(\sqrt{a}+\sqrt{b}=1.\)
TÌm GTLN và GTNN của biểu thức \(F=\sqrt{a+8}+\sqrt{b+8}\)