Những câu hỏi liên quan
LT
Xem chi tiết
NT
4 tháng 9 2021 lúc 19:34

a: ĐKXĐ: \(\left[{}\begin{matrix}x\ge6\\x\le2\end{matrix}\right.\)

b: ĐKXĐ: \(-1\le x\le1\)

c: ĐKXĐ: \(x\le-2\)

Bình luận (2)
NT
4 tháng 9 2021 lúc 19:39

a. \(\sqrt{\left(x-2\right)\left(x-6\right)}\) có nghĩa \(\Leftrightarrow\left\{{}\begin{matrix}x-2\ge0\\x-6\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\ge6\end{matrix}\right.\) \(\Leftrightarrow x\ge6\)

b. \(\sqrt{1-x^2}\) có nghĩa \(\Leftrightarrow1-x^2\ge0\) \(\Leftrightarrow\left\{{}\begin{matrix}1-x\ge0\\x+1\ge0\end{matrix}\right.\) \(\Leftrightarrow-1\le x\le1\)

\(\sqrt{-5x-10}\) có nghĩa \(\Leftrightarrow-5x-10\ge0\Leftrightarrow-5x\ge10\Leftrightarrow x\ge-2\)

Bình luận (3)
NA
Xem chi tiết
TN
Xem chi tiết
DD
1 tháng 7 2017 lúc 17:56

\(\sqrt{ }\){\(\frac{ }{ }\){-3}{4-5x}} có nghĩa khi và chỉ khi

4-5x>0

<=>-5x>-4

<=>x<0,8

Bình luận (0)
LN
1 tháng 7 2017 lúc 19:01

Có nghĩa <=> -3/4-5x > 0

Vì -3<0 nên 4-5x<0 <=> -5x<-4 <=> x>4/5

Và 4-5x khác 0 <=> -5x khác -4 <=> x khác 4/5 

=> x>4/5 và x khác 4/5

Bình luận (0)
H24
Xem chi tiết
VH
22 tháng 8 2020 lúc 10:41

\(\sqrt{\frac{-3}{4-5x}}\) có nghĩa

\(\Leftrightarrow\frac{-3}{4-5x}\ge0\)

\(\Leftrightarrow4-5x< 0\left(-3< 0\right)\)

\(\Leftrightarrow-5x< -4\)

\(\Leftrightarrow x>\frac{4}{5}\)

Vậy.............

Bình luận (0)
 Khách vãng lai đã xóa
CQ
22 tháng 8 2020 lúc 10:44

\(\sqrt{\frac{-3}{4-5x}}\) Có nghĩa : 

\(\Leftrightarrow\frac{-3}{4-5x}\ge0\)         

\(4-5x< 0\)         ( Vì -3 < 0 và 4 - 5x là mẫu số )                                                                            

\(-5x< -4\)       

 \(x>\frac{4}{5}\)

Bình luận (0)
 Khách vãng lai đã xóa
3N
Xem chi tiết
HQ
4 tháng 7 2021 lúc 16:08

\(\sqrt{\left(3-5x\right)\left(x-6\right)}\ge0\)

\(< =>TH1:3-5x\ge0;x-6\ge0\)

\(\hept{\begin{cases}3-5x\ge0\\x-6\ge0\end{cases}\hept{\begin{cases}x\le\frac{3}{5}\\x\ge6\end{cases}}}\)pt vô nghiệm

\(TH2:3-5x< 0;x-6< 0\)

\(\hept{\begin{cases}3-5x< 0\\x-6< 0\end{cases}\hept{\begin{cases}x>\frac{3}{5}\\x< 6\end{cases}}}\)

để căn thức đxđ thì\(\frac{3}{5}< x< 6\)

Bình luận (0)
 Khách vãng lai đã xóa

\(\sqrt{\left(3-5x\right)\left(x-6\right)}\) có nghĩa \(\Leftrightarrow\left(3-5x\right)\left(x-5\right)\ge0\)

                                                             \(\Leftrightarrow\hept{\begin{cases}3-5x\ge0\\x-6\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}3-5x\le0\\x-6\le0\end{cases}}\)

                                                             \(\Leftrightarrow\hept{\begin{cases}x\le\frac{3}{5}\\x\ge6\end{cases}}\)(vô lí)           Hoặc \(\hept{\begin{cases}x\ge\frac{3}{5}\\x\le6\end{cases}}\)

                                                             \(\Leftrightarrow\frac{3}{5}\le x\le6\)

Bình luận (0)
 Khách vãng lai đã xóa
BL
Xem chi tiết
LP
26 tháng 6 2018 lúc 17:38

cần 2/3x lớn hơn hoặc =0

=>x lớn hơn hoặc bằng 0

Bình luận (0)
DT
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
PL
24 tháng 6 2019 lúc 21:18

\(a,\sqrt{x^2-8x+18}=\sqrt{x^2-8x+16+2}\)

\(=\sqrt{\left(x-4\right)^2+2}\)

Vì \(\left(x-4\right)^2+2>0\)với \(\forall x\)

\(\Rightarrow\)Biểu thức luôn được xác định với mọi x 

\(b,\sqrt{\frac{3x+4}{x-2}}\)

\(btxđ\Leftrightarrow\hept{\begin{cases}x-2\ne0\\\frac{3x+4}{x-2}\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ne2\\\frac{3x+4}{x-2}\ge0\end{cases}}}\)

\(\frac{3x+4}{x-2}\ge0\)\(\Rightarrow\orbr{\begin{cases}3x+4\ge0;x-2\ge0\\3x+4< 0;x-2< 0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x\ge-\frac{4}{3};x\ge2\\x< -\frac{4}{3};x< 2\end{cases}\Rightarrow\orbr{\begin{cases}x\ge2\\x< -\frac{4}{3}\end{cases}}}\)

Mà \(x\ne2\)\(\Rightarrow x>2\)hoặc \(x< -\frac{4}{3}\)

Bình luận (0)
H24
25 tháng 6 2019 lúc 6:43

a,\(\sqrt{x^2-8x+18=\sqrt{x^2}-8x+16+2.}\)

\(=\sqrt{\left(x-4\right)^2+2}\)

Vì \(\left(x-4\right)^2+2>0\)với\(\forall x\)

\(\Rightarrow\)Biểu thức luônđược xác định với mọi x

Bình luận (0)
H24
25 tháng 6 2019 lúc 7:02

b)\(\sqrt{\frac{3x+4}{x-2}}\)

\(btxđ\Leftrightarrow\hept{\begin{cases}x-2\ne0\\\frac{3x+4}{x-2}\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ne2\\\frac{3x+4}{x-2}\ge0\end{cases}}}\)

\(\frac{3x+4}{x-2}\ge0\Rightarrow\orbr{\begin{cases}3x+4\ge0;x-2\ge0\\3x+4< 0;x-2< 0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x\ge-\frac{4}{3};x\ge2\\x< \ge-\frac{4}{3};x< 2\end{cases}\Rightarrow\orbr{\begin{cases}x\ge2\\x< -\frac{4}{3}\end{cases}}}\)

\(\Rightarrow\)\(x< -\frac{4}{3};x\ne2\)

Bình luận (0)