Những câu hỏi liên quan
PL
Xem chi tiết
TT
Xem chi tiết
DT
27 tháng 3 2020 lúc 17:10

Xét hiệu: A=a3+b3+c3-a-b-c = (a3-a)+(b3-b)+(c3-c)

=a(a-1)(a+1) + b(b-1)(b+1) + c(c-1)(c+1)

Tích của 3 số nguyên liên tiếp luôn ⋮ 6 vì trong 3 số đó có 1 số chia hết cho 2 ; một số chia hết cho 3 (Điều hiển nhiên)

⇒ A ⋮ 6

Vậy nếu a3+b3+c3 chia hết cho 6 thì a+b+c chia hết cho 6 và ngược lại.(ĐPCM)

Bình luận (0)
 Khách vãng lai đã xóa
PN
Xem chi tiết
LQ
15 tháng 8 2018 lúc 14:43

a3+b3+c3=(a+b+c)(a2+b2+c2−ab−bc−ac)+3abc

 

                    =(a+b+c)[a2+b2+c2+2ab+2ac+2bc−3ac−3bc−3ab)+3abc

 

                    =(a=b+c)[(a+b+c)2−3(ab+bc+ac)]+3abc

 

*Nếu a+b+c3a3+b3+c33

 

*Nếu a3+b3+c33(a+b+c)[(a+b+c)2−3(ab+bc+ca)]3a+b+c3

 

làm như vậy nha, mk xin lỗi , ko bt cách viết số mũ nha, k nha

Bình luận (0)
PH
15 tháng 8 2018 lúc 17:47

    Xét \(a^3+b^3+c^3-3abc=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)

                                                  \(=\left[\left(a+b\right)^3+c^3\right]-3ab\left(a+b\right)-3abc\)

                                                   \(=\left(a+b+c\right).\left[\left(a+b\right)^2-\left(a+b\right).c+c^2\right]-3ab\left(a+b+c\right)\)

                                                   \(=\left(a+b+c\right).\left[a^2+2ab+b^2-ac-bc+c^2\right]-3ab\left(a+b+c\right)\)

                                                   \(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)   

                                                   \(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)

- Nếu \(a+b+c⋮3\)\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)⋮3\)

Mà 3abc chia hết cho 3 \(\Rightarrow a^3+b^3+c^3⋮3\)

- Nếu \(a^3+b^3+c^3⋮3\)mà \(3abc⋮3\Rightarrow a^3+b^3+c^3-3abc⋮3\)

\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)⋮3\Rightarrow a+b+c⋮3\)

Chúc bạn học tốt.

                                              

Bình luận (0)
NT
13 tháng 5 2024 lúc 7:13

Nhanh hơn là: 

a3-a=a(a-1)(a+1) chia hết cho 3
CMTT: b3-b chia hết cho 3
 

Bình luận (0)
H24
Xem chi tiết
XO
13 tháng 4 2021 lúc 21:35

Xét hiệu a3 + b3 - (a + b) = a3 - a + b3 - b = a(a2 - 1) + b(b2 - 1) 

                                                                  = (a - 1)a(a + 1) + (b - 1)b(b + 1) 

Nhận thấy (a - 1)a(a + 1) \(⋮6\) (tích 3 số nguyên liên tiếp)

và \(\left(b-1\right)b\left(b+1\right)⋮6\)

=> (a - 1)a(a + 1) + (b - 1)b(b + 1) \(⋮\)6

=> a3 + b3 - (a + b)  \(⋮\)6

=> a3 + b3  \(⋮\)6 khi và chỉ khi a + b  \(⋮\)6

Bình luận (0)
 Khách vãng lai đã xóa
TP
Xem chi tiết
ND
29 tháng 9 2015 lúc 19:47

Bài 1 : 

Ta có : 3a + 3b và a + 2b đều chia hết cho 3

=> ( 3a + 3b ) - ( a + 2b ) chia hết cho 3

=> 2a + b chia hết cho 3 ( đpcm )

Bài 2 : 

Mình có sách có bài này nhưng mà chưa học nên cũng không hiểu . Nếu bạn cần thì cứ nói với mình mình sẽ giúp

Bình luận (0)
ND
11 tháng 4 2018 lúc 19:43

hayyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

Bình luận (0)
NC
18 tháng 5 2018 lúc 16:27

bài 2 

a, ta có 2 TH:

   +)n là số chẵn =>n+10 chia hết cho 2

   +)n là số lẻ =>n+15 chia hết cho 2

Bình luận (0)
AN
Xem chi tiết
NT
15 tháng 8 2021 lúc 18:34

Ta có: \(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)

mà \(a^3+b^3⋮3\)

và \(3ab\left(a+b\right)⋮3\)

nên \(a+b⋮3\)

Bình luận (0)
DT
Xem chi tiết
VG
7 tháng 11 2017 lúc 20:00

ta có: \(a^3+b^3+c^3-\left(a+b+c\right)=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right).\)

                                                                     \(=a\left(a-1\right)\left(a+1\right)+b\left(b-1\right)\left(b+1\right)+c\left(c-1\right)\left(c+1\right)\) (*)

mà \(a\left(a-1\right)\left(a+1\right)\) là tích 3 số liên tiếp nên có 1 số chia hết cho 2 và 1 số chia hết cho 3

=> \(a\left(a-1\right)\left(a+1\right)⋮6\)

tương tự :  \(b\left(b-1\right)\left(b+1\right)⋮6\)

    \(c\left(c-1\right)\left(c+1\right)⋮6\)

=> (*) chia hếtcho 6

\(\Leftrightarrow a^3+b^3+c^3-\left(a+b+c\right)\) chia hết cho 6

mà theo bài ra ta có: \(a+b+c⋮6\)

nên  \(a^3+b^3+c^3⋮6\) => đpcm

Bình luận (0)
DA
Xem chi tiết
TD
Xem chi tiết