Tìm GTNN của biểu thức
C=2x^2+5x-1
D=x^2+y^2+4x-6y+7
E=2x^3+y^2+2x+6y+2xy+14
Tìm GTNN của biểu thức
C=2x^2+5x-1
D=x^2+y^2+4x-6y+7
E=2x^3+y^2+2x+6y+2xy+14
a: \(C=2\left(x^2+\dfrac{5}{2}x-\dfrac{1}{2}\right)\)
\(=2\left(x^2+2\cdot x\cdot\dfrac{5}{4}+\dfrac{25}{16}-\dfrac{33}{16}\right)\)
\(=2\left(x+\dfrac{5}{4}\right)^2-\dfrac{33}{8}>=-\dfrac{33}{8}\)
Dấu '=' xảy ra khi x=-5/4
b: \(=x^2+4x+4+y^2-6y+9-6\)
\(=\left(x+2\right)^2+\left(y-3\right)^2-6>=-6\)
Dấu '=' xảy ra khi x=-2 và y=3
Tìm GTNN của:
K=2x^2+2y^2+2xy-6x-6y-13
\(K=2x^2+2y^2+2xy-6x-6y-13\)
\(K=2x^2+2y^2+2xy-6x-6y-\left(2\cdot3+6\cdot1+1\right)\)
\(K=\left(2x^2+2y^2+2xy-2\cdot3\right)-\left(6x+6y+6\cdot1\right)-1\)
\(K=2\left(x^2+y^2+xy-3\right)-6\left(x+y+1\right)-1\)
\(K=2\left(x^2+y^2+xy-3\right)-2\cdot3\left(x+y+1\right)-1\)
\(K=2\left(x^2+y^2+xy-3\right)-2\cdot\left(3x+3y+3\cdot1\right)-1\)
\(K=2\left(x^2+y^2+xy-3-3x-3y-3\right)-1\)
\(K=2\left(x^2+y^2+xy-3x-3y-3-3\right)-1\)
\(K=2\left(x^2+y^2+xy-3x-3y-6\right)-1\)
\(K=2\left(x^2+y^2+xy-3x-3y\right)-2\cdot6-1\)
\(K=2\left(x^2+y^2+xy-3x-3y\right)-13\)
\(K=2\left[\left(-3y+y^2\right)-\left(3x-x^2\right)+xy\right]-13\)
Để \(K\) là \(GTNN\) thì \(2\left[\left(-3y+y^2\right)-\left(3x-x^2\right)+xy\right]\) phải có \(GTNN;\)
Để \(2\left[\left(-3y+y^2\right)-\left(3x-x^2\right)+xy\right]\) là \(GTNN\)( không xét \(x\cdot y\)) thì ta có:
\(-3y+y^2\inℤ\) và phải có \(GTNN\) (1)
\(3x-x^2\inℕ\) và phải có \(GTLN\) (2)
Để thỏa mãn (1) thì \(y\in\left\{1,2\right\}\) (do \(-3\cdot1+1^2=-3\cdot2+2^2\)) và \(x\in\left\{1,2\right\}\) vì lý do tương tự (1).
Nhưng (1) cần càng nhỏ càng tốt và (2) thì ngược lại\(\Rightarrow y=1;x=2\) (chỉ mới là giả thuyết do chưa xét \(x\cdot y\))
Xét với mọi trường hợp:
K trong mọi trường hợp \(x\ne2;y\ne1\)luôn lớn hơn K trong trường hợp \(x=2;y=1\Rightarrow\) chắc chắn \(x=2;y=1\)
Thay \(x\) trong biểu thức của đề bài thành \(1\); \(y\) thành \(2\);giải ra được \(GTNN\) của \(K=\left(-17\right)\)
tìm gtnn của biểu thức P=x^3-3x+5 và Q=2x^2+y^2-2xy-6x+2y+2022
Bài 1: Rút gọn biểu thức sau:
A/ (x+3).(x^2-3x+9) -(54+x^3)
B/ (2x+y).(4x^2-2xy+y^2)-(2x-y).(4x^2+2xy+y^2)
C/ (2x-1)^2- (2x+2)^2
D/ (a+b)^3 - 3ab.(a+b)
Bài 2: tìm x, biết
A/ x^2-2x +1=25
B/ x^3 -3x^2= -3x+1
Bài 3 chứng minh rằng giá trị của biểu thức sau luôn dương với mọi giá trị của biến
A/ A= 4x^2+4x+2
B/ B= 2x^2-2x+1
bài 1 : a. x^3 +27 -54-x^3 =-27
b. 8x^3 +y^3 -8x^3 +y^3 =2y^3
c. (2x-1+2x+2)(2x-1-2x-2)=(4x+1).(-3)=-12x-3
d. a^3 +b^3 +3ab(a+b) -3ab(a+b)=a^3+b^3
A=(4x^2 +4x+1 )+1
A=(2x+1)^2 +1 >0
B=(x^2 -2x+1 )+x^2
B=(x-1)^2 +x^2 >0
tìm gtnn của biểu thức
a/ x^2 + 2y^2+2xy +4x + 6y +19
b/2x^2+y^2+2xy-2y-4
c/4x^2 +2xy-4x+4xy-3
a) \(A=x^2+2y^2+2xy+4x+6y+19\)
\(=\left[\left(x^2+2xy+y^2\right)+2.\left(x+y\right).2+4\right]+\left(y^2+2y+1\right)+14\)
\(=\left[\left(x+y\right)^2+2\left(x+y\right).2+2^2\right]+\left(y+1\right)^2+14\)
\(=\left(x+y+2\right)^2+\left(y+1\right)^2+14\ge14\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y+2=0\\y=-1\end{cases}}\Leftrightarrow x=y=-1\)
b)Đề có gì đó sai sai...
c) Tương tự câu b,em cũng thấy sai sai...HÓng cao nhân giải ạ!
b) \(P=2x^2+y^2+2xy-2y-4\)
\(\Leftrightarrow2P=4x^2+2y^2+4xy-4y-8\)
\(\Leftrightarrow2P=\left(4x^2+4xy+y^2\right)+\left(y^2-4y+4\right)-12\)
\(\Leftrightarrow2P=\left(2x+y\right)^2+\left(y-2\right)^2-12\ge-12\forall x;y\)
Có \(2P\ge-12\Leftrightarrow P\ge-6\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x+y=0\\y-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}}\)
TIM GTNN :
B= 5x^2 -x-2
C=x^ -4xy +7y^2+y+5
D = x^2 +y^2+z^2-xy-yz-zx-+5
E = x^2- 2xy -4x+2y^2+6y+10
F = 4x^2 +4xy+4x+3y^2+8y+20
H = (x^2-2x+3)*(x^2-2x+5)+10
2x^2+xy+2y^2 = 5/4.(x+y)^2 + 3/4. (x-y)^2 >= 5/4. (x+y)^2
=> cbh(2x^2+xy+2y^2) >= cbh5 / 2. (x+y)
tương tự với 2 căn còn lại.. cộng vế ta có VT >= cbh5 ( x+y+z) = cbh5 : dpcm
dau = cay ra <=> x=y=z=1/3
Tìm GTNN của 2x^2+y^2-2xy+4x-6y+17
Tìm GTNN của
S=2x^2+2y^2+2xy-6x-6y-13
Cảm ơn nhé!!!!!!!!!!
Tìm GTNN của:
F=2x^2+2y^2+2xy-6x-6y-13
Thanks các bạn nhiều!!!!!!!!!!
Gợi ý: Nhân 2 vào biểu thức rồi tách thành tổng các bình phương \(\rightarrow\) Tìm được giá trị nhỏ nhất của F là -19 tại x = y = 1
Xét:\(2F=4x^2+4y^2+4xy-12x-12y-26\)
\(=\left(4x^2-2.2x.y+y^2\right)-6\left(2x+y\right)+9+3y^2-6y-35\)
\(=\left(2x+y-3\right)^2+3\left(y-1\right)^2-38\ge-38\)
Suy ra \(F\ge-19\)
Đẳng thức xảy ra khi ..(tự xét)