Những câu hỏi liên quan
NT
Xem chi tiết
LD
Xem chi tiết
HP
23 tháng 1 2017 lúc 21:11

-(z+x)3  mới đúng-

đặt x+y=a , y+z=b , z+x=c thì a+b+c=2(x+y+z)

ta có 8(x+y+z)3-(x+y)3-(y+z)3-(z+x)3=[2(x+y+z)]3-(x+y)3-(y+z)3-(z+x)3=(a+b+c)3-a3-b3-c3=3(a+b)(b+c)(c+a) 

=3(x+2y+z)(y+2z+x)(z+2x+y)

Bình luận (0)
PB
Xem chi tiết
CT
17 tháng 11 2019 lúc 7:25

a) (x - 1)(x + l)(x - 2)(x - 4).      b) (x - 2)( x 2  + 4).

c) 2y(3 x 2   +   y 2 ).                          d) 2(x + y + z) ( a   -   b ) 2 .

Bình luận (0)
RS
24 tháng 8 2021 lúc 20:46

a. \(x^2\left(x-3\right)^2-\left(x-3\right)^2-x^2+1\)

\(=\left(x-3\right)^2\left(x^2-1\right)-\left(x^2-1\right)\)

\(=\left[\left(x-3\right)^2-1\right]\left(x^2-1\right)\)

\(=\left(x-3+1\right)\left(x-3-1\right)\left(x+1\right)\left(x-1\right)\)

\(=\left(x-2\right)\left(x-4\right)\left(x+1\right)\left(x-1\right)\)

b. \(x^3-2x^2+4x-8\)

\(=\left(x^3+4x\right)-\left(2x^2+8\right)\)

\(=x\left(x^2+4\right)-2\left(x^2+4\right)\)

\(=\left(x-2\right)\left(x^2+4\right)\)

c. \(\left(x+y\right)^3-\left(x-y\right)^3\)

\(=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x^3-3x^2y+3xy^2-y^3\right)\)

\(=x^3+3x^2y+3xy^2+y^3-x^3+3x^2y-3xy^2+y^3\)

\(=6x^2y+2y^3\)

\(=2y\left(3x^2+y^2\right)\)

d. \(2a^2\left(x+y+z\right)-4ab\left(x+y+z\right)+2b^2\left(x+y+z\right)\)

\(=\left(2a^2-4ab+2b^2\right)\left(x+y+z\right)\)

\(=2\left(a^2-2ab+b^2\right)\left(x+y+z\right)\)

\(=2\left(a-b\right)^2\left(x+y+z\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
NP
Xem chi tiết
NH
4 tháng 12 2014 lúc 17:15

= x3 + y3 + z3 + 3x2yz + 3xy2z + 3xyz2 - x3 -y3 - z3

=3x2yz + 3xy2z + 3xyz2

= 3xyz( x + y + z)

Bình luận (0)
LT
4 tháng 12 2014 lúc 20:05

b.

x^4+2012x^2+2012x-x+2012=

(x^4-x)+2012(x^2+x+1)=

x(x-1)(x^2+x+1)+2012(x^2+x+1)=

(x+2012)(x^2+x+1)

 

Bình luận (0)
VH
25 tháng 1 2017 lúc 11:22

làm sao ra vậy

Bình luận (0)
TV
Xem chi tiết
CI
Xem chi tiết
NM
20 tháng 10 2021 lúc 10:27

Đặt \(\left\{{}\begin{matrix}a=x+y\\b=y+z\\c=x+z\end{matrix}\right.\Leftrightarrow x+y+z=\dfrac{a+b+c}{2}\)

\(8\left(x+y+z\right)^3-\left(x+y\right)^3-\left(y+z\right)^3-\left(z+x\right)^3\\ =8\left(\dfrac{a+b+c}{2}\right)^3-a^3-b^3-c^3\\ =\left(a+b+c\right)^3-a^3-b^3-c^3\\ =\left(a+b\right)^3+c^3+3\left(a+b\right)c\left(a+b+c\right)-\left(a+b\right)^3+3ab\left(a+b\right)-c^3\\ =3\left(a+b\right)\left(ac+bc+c^2+ab\right)\\ =3\left(a+b\right)\left(b+c\right)\left(a+c\right)\\ =3\left(x+y+y+z\right)\left(y+z+z+x\right)\left(z+x+x+y\right)\\ =3\left(x+2y+z\right)\left(x+y+2z\right)\left(2x+y+z\right)\)

Bình luận (0)
TL
Xem chi tiết
LL
1 tháng 11 2021 lúc 22:38

1D  2C

Bình luận (0)
NT
1 tháng 11 2021 lúc 22:39

Câu 1: D

Câu 2: C

Bình luận (0)
PK
Xem chi tiết
LT
28 tháng 8 2018 lúc 14:26

Ta có: (x-y)^3+(y-z)^3+(z-x)^3 
Bạn để ý thấy (x-y)^3+(y-z)^3 là hằng đẳng thức dạng A^3+B^3=(A+B)(A^2-AB+B^2). Vậy ta có thể phân tích (x-y)^3+(y-z)^3 như sau 
(x-y+y-z)((x-y)^2-(x-y)(y-z)+(y-z)^2) 
(x-z)((x-y)^2-(x-y)(y-z)+(y-z)^2) 
-(z-x)((x-y)^2-(x-y)(y-z)+(y-z)^2) 

Bình luận (0)
DG
28 tháng 8 2018 lúc 23:27

cách khác:

Đặt:   \(x-y=a;\)\(y-z=b;\)\(z-x=c\)

suy ra:    \(a+b+c=0\)

=>  \(a+b=-c\)

=>  \(\left(a+b\right)^3=-c^3\)

=>  \(a^3+b^3+c^3=a^3+b^3-\left(a+b\right)^3\)

<=>  \(a^3+b^3+c^3=-3ab\left(a+b\right)\)

<=>  \(a^3+b^3+c^3=-3ab\left(-c\right)=3abc\)

Thay trở lại đc:    \(\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3=3\left(x-y\right)\left(y-z\right)\left(z-x\right)\)

Bình luận (0)
TN
Xem chi tiết