1/6+1/24+1/60+...+1/6840
1/6+1/24+1/60+1/120+1/210+...+1/6840. Tính giá trị của biểu thức.
Tính nhanh: \(A=\frac{1}{6}+\frac{1}{24}+\frac{1}{60}+...+\frac{1}{6840}\)
\(A=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{18\cdot19\cdot20}\)
\(A=\frac{1}{2}\cdot\frac{2}{1\cdot2\cdot3}+\frac{1}{2}\cdot\frac{2}{2\cdot3\cdot4}+\frac{1}{2}\cdot\frac{2}{3\cdot4\cdot5}+...+\frac{1}{2}\cdot\frac{2}{18\cdot19\cdot20}\)
\(A=\frac{1}{2}\left(\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{18\cdot19\cdot20}\right)\)
\(A=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2.3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+\frac{1}{3\cdot4}-\frac{1}{4\cdot5}+...+\frac{1}{18\cdot19}-\frac{1}{19\cdot20}\right)\)
\(A=\frac{1}{2}\left(\frac{1}{2}-0-0-...-0-\frac{1}{380}\right)\)
\(A=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{380}\right)\)
\(A=\frac{1}{2}\cdot\frac{189}{380}\)
\(A=\frac{189}{760}\)
1.2+2.3+3.4+.....+2010.2011
1/24+1/60+1/120+...+1/6840
a)1/24+1/60+1/120+...+1/6840
b)1.2+2.3+3.4+2010.2011
b)
A=1.2+2.3+3.4+...+2010.2011
3A=1.2.3+2.3.3+3.4.3+...+2010.2011.3
3A=1.2.3+2.3.(4-1)+3.4.(5-2)+...+2010.2011.(2012-2009)
=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...-2009.2010.2011+2010.2011.2012
=2010.2011.2012
=>A=2010.2011.2012 / 3
=2710908440
Tính giá trị biểu thức
\(A=\frac{1}{6}+\frac{1}{24}+\frac{1}{60}+\frac{1}{120}+\frac{1}{210}+...+\frac{1}{6840}\)
1. So sanh
a) 42/43 va 58/59
b) 18/31 va 15/37
c) 53/57 va 531/571
d) 25/26 và 25251/26261
e) 3535.232323/353535.2323; 3535/3534 va 2323/2322
g) 13/38 va 1/3
2.Chung minh rang:
a) N=1/4^2+1/6^2+1/8^2+...+1/(2n)^2 < 1/4
b) 1/26+1/27+1/28+...+1/50=1-1/2+1/3-1/4+...+1/49-1/50
c) A=1/6+1/24+1/60+...+1/6840 < 1/4
d) B= 36/15+36/105+36/315+...+36/19575 < 3
Mn oi!!!!! Giup minh lam 2 bai nay voi!!!!!
Bài 1 :
a) \(\dfrac{42}{43}=1-\dfrac{1}{43}\)
\(\dfrac{58}{59}=1-\dfrac{1}{59}\)
Mà \(\dfrac{1}{43}>\dfrac{1}{59}\Leftrightarrow\dfrac{42}{43}< \dfrac{58}{59}\)
b) \(\dfrac{18}{31}>\dfrac{15}{31}>\dfrac{15}{37}\)
\(\Leftrightarrow\dfrac{18}{31}>\dfrac{15}{37}\)
c) \(\dfrac{53}{57}=1-\dfrac{4}{57}\)
\(\dfrac{531}{517}=1-\dfrac{40}{517}\)
Mà \(\dfrac{4}{57}=\dfrac{40}{570}>\dfrac{40}{517}\)
\(\Leftrightarrow\dfrac{53}{57}< \dfrac{531}{517}\)
Tính tổng: 1/6+1/24+1/60+1/120+...+1/1320
Gọi tổng đã cho là A.
Ta có: A = 1/1x2x3 + 1/2x3x4 + 1/3x4x5 +1/4x5x6 .... + 1/10x11x12 Chú ý rằng: 1/1x2x3 = 1/2 x(1/1x2 - 1/2x3) 1/2x3x4 =1/2 x (1/2x3 - 1/3x4) 1/3x4x5 = 1/2 x (1/3x4 - 1/4x5) ..........
Từ đó suy ra: A = 1/2 x (1/1x2 - 1/2x3 + 1/2x3 - 1/3x4+1/3x4 - 1/4x5+...+ 1/10x11 - 1/11x12) = 1/2 x (1/1x2 - 1/11x12) =1/2 x ( 1/2 - 1/132) = 65/264
Tính tổng:
1/6+1/24+1/60+1/120+...+1/1320
Gọi tổng đã cho là A. Ta có:
A = 1/1x2x3 + 1/2x3x4 + 1/3x4x5 +1/4x5x6 .... + 1/10x11x12
Chú ý rằng:
1/1x2x3 = 1/2 x(1/1x2 - 1/2x3)
1/2x3x4 =1/2 x (1/2x3 - 1/3x4)
1/3x4x5 = 1/2 x (1/3x4 - 1/4x5)
..........
Từ đó suy ra:
A = 1/2 x (1/1x2 - 1/2x3 + 1/2x3 - 1/3x4+1/3x4 - 1/4x5+...+ 1/10x11 - 1/11x12)
= 1/2 x (1/1x2 - 1/11x12)
=1/2 x ( 1/2 - 1/132)
= 65/264
Tính: B=1\6+1\24+1\60+...+1\990
B=1/1.2.3 +1/2.3.4 +1/3.4.5 +.....+1/9.10.11
=1/2.(2/1.2.3 +2/2.3.4 +2/3.4.5 +.......+2/9.10.11)
=1/2.(1/1.2 -1/2.3 +1/2.3 -1/3.4 +1/4.5 +........+1/9.10 -1/10 .11)
=1/2 .(1/1.2 -1/10.11)
= 1/2 .27/55
=27/110