Những câu hỏi liên quan
LH
Xem chi tiết
H24
Xem chi tiết
NM
29 tháng 8 2021 lúc 11:07

\(x^2+x+13=y^2\\ \Leftrightarrow x^2-y^2+x+13=0\\ \Leftrightarrow4x^2-4y^2+4x+52=0\\ \Leftrightarrow\left(2x+1\right)^2-4y^2=51\\ \Leftrightarrow\left(2x+1-2y\right)\left(2x+1+2y\right)=51=51\cdot1=17\cdot3\left(x,y>0\right)\)

Tới đây giải ra các trường hợp thui

 

Bình luận (0)
ND
Xem chi tiết
NL
14 tháng 3 2022 lúc 14:46

\(x^6+\left(y^6+15y^4+75y^2+125\right)+z^3-3x^2y^2z-15x^2z=0\)

\(\Leftrightarrow x^6+\left(y^2+5\right)^3+z^3=3x^2\left(y^2+5\right)z\)

Ta có:

\(x^6+\left(y^2+5\right)^3+z^3\ge3\sqrt[3]{x^6\left(y^2+5\right)^3z^3}=3x^2\left(y^2+5\right)z\)

Đẳng thức xảy ra khi và chỉ khi:

\(x^2=y^2+5=z\)

Từ \(x^2=y^2+5\Rightarrow\left(x-y\right)\left(x+y\right)=5\)

\(\Rightarrow\left(x;y\right)=\left(3;2\right)\Rightarrow z=9\)

Vậy có đúng 1 bộ số nguyên dương thỏa mãn pt:

\(\left(x;y;z\right)=\left(3;2;9\right)\)

Bình luận (0)
H24
Xem chi tiết
LK
Xem chi tiết
LT
5 tháng 12 2024 lúc 21:55

2) Ta có: 

xy2 + 2xy -243y +x = 0

 x( y2 + 2y + 1) -243y = 0

 x(y+1)2 = 243y

 x = 243y(y+1)2

Vì x thuộc Z nên 243y(y+1)2 thuộc Z, mà Ư CLN(y,y+1) = 1  243 chia hết (y+1)2 

 (y+1)2 thuộc {9; 81}

 y+1 thuộc {3; -3; 9; -9}

 y thuộc {2; -4; 8; -10}

 x thuộc {54; -108; 24; -30}

Vậy (x; y) = (54; 2) (24; 8) (-108;-4) (-30;-10)

 

Bình luận (0)
PN
Xem chi tiết
H24
Xem chi tiết
DD
17 tháng 11 2017 lúc 20:21

Tui vừa trả lời 3 bài này ở câu của Nguyễn Anh Quân

Xem tui giải đúng không nha

Xin Wrecking Ball nhận xét

Bình luận (0)
H24
17 tháng 11 2017 lúc 20:22

Đỗ Đức Đạt cop trên Yahoo

Bình luận (0)
XT
17 tháng 11 2017 lúc 20:23

1...Chia cả hai vế cho xyz ta được 
3xy/xyz + 3yz/xyz + 3zx/xyz = 4xyz/xyz 
<=>3/x + 3/y + 3/z = 4 
<=>1/x + 1/y + 1/z = 4/3 
Vì x,y,z bình đẳng nên giả sử 0<x<=y<=z 
+nếu x>=4=> y>=4;z>=4 
=> 1/x + 1/y + 1/z <= 1/4 + 1/4 + 1/4 =3/4 < 4/3 => pt vô nghiệm 
+nếu x=1 => 1+1/y+1/z=4/3 
<=> 1/y+1/z=1/3 
<=> 3(y+z)=yz 
<=> 3y+3z-yz=0 
<=> 3y-yz+3z-9=-9 
<=> y(3-z)-3(3-z)=-9 
<=> (3-z)(3-y)=9 
Vì y,z nguyên dương nên (3-y),(3-z) nguyên dương 
mà 9=3*3=1*9=9*1 
==>3-z=3 và 3-y=3 => z=0 và y=0 (loại vì y,z nguyên dương) 
+nếu x=2 => 1/2+1/y+1/z=4/3 
<=> 1/y+1/z=5/6 
<=> 6(y+z)=5yz 
<=> 6y+6z-5yz=0 
<=> 30y-25yz+30z-36=-36 
<=> 5y(6-5z)-6(6-5z)=-36 
<=> (5z-6)(5y-6)=36 
Vì y,z nguyên dương nên (5y-6),(5z-6) nguyên dương 
mà 36=6*6=2*18=18*2=3*12=12*3=4*9=9*4 
Giải tương tự phần trên ta được 
y=2,z=3 hoặc y=3,z=2 
+nếu x=3 => 1/3+1/y+1/z=4/3 
<=> 1/y+1/z=1 
Giải tương tự phần trên ta được y=z=2 
Vậy (x;y;z)=(2;2;3);(2;3;2);(3;2;2)

MK cop nhưng ủng hộ mk nha , mk có lòng trả lời

Bình luận (0)
TM
Xem chi tiết
KD
Xem chi tiết