Những câu hỏi liên quan
NN
Xem chi tiết
NT
8 tháng 8 2023 lúc 14:03

a: A=-2(x^2-5/2x+2)

=-2(x^2-2*x*5/4+25/16+7/16)

=-2(x-5/4)^2-7/8<=-7/8<0 với mọi x

b: B=x^2+5x+25/4+3/4

=(x+5/2)^2+3/4>=3/4>0 

=>B luôn dương với mọi x

c: C=x^2-20x+100+1

=(x-10)^2+1>=1>0 với mọi x

=>C luôn dương với mọi x

Bình luận (0)
PB
Xem chi tiết
CT
27 tháng 4 2018 lúc 12:33

Bình luận (0)
TT
Xem chi tiết
NT
5 tháng 11 2021 lúc 21:06

a: \(A=x^3-27-x^3+3x^2-3x+1-4\left(x^2-4\right)-x\)

\(=3x^2-4x-26-4x^2+16\)

\(=-x^2-4x-10\)

Bình luận (0)
HH
Xem chi tiết
H24
28 tháng 5 2022 lúc 11:47

Ptr có:`\Delta=(-m)^2-4(m-3)=m^2-4m+12=(m-2)^2+8 > 0 AA m`

`=>` Ptr luôn có nghiệm `AA m`

`=>` Áp dụng Viét có:`{(x_1+x_2=[-b]/a=m),(x_1.x_2=c/a=m-3):}`

Ta có:`A=2(x_1 ^2+x_2 ^2)-x_1.x_2`

`<=>A=2[(x_1+x_2)^2-2x_1.x_2]-x_1.x_2`

`<=>A=2[m^2-2(m-3)]-(m-3)`

`<=>A=2(m^2-2m+6)-m+3`

`<=>A=2m^2-4m+12-m+3=2m^2-5m+15`

`<=>A=2(m^2-5/2+15/2)`

`<=>A=2[(m-5/4)^2+95/16]`

`<=>A=2(m-5/4)^2+95/8`

Vì `2(m-5/4)^2 >= 0 AA m<=>2(m-5/4)^2+95/8 >= 95/8 AA m`

     Hay `A >= 95/8 AA m`

Dấu "`=`" xảy ra`<=>(m-5/4)^2=0<=>m=5/4`

Vậy `GTN N` của `A` là `95/8` khi `m=5/4`

Bình luận (0)
H24
28 tháng 5 2022 lúc 11:47

Đề liệu cs sai 0 bạn nhỉ, ở cái biểu thức `A` í chứ nếu đề vậy thì 0 tìm đc GTNN đâu (Theo mik thì là vậy)

Bình luận (1)
H24
Xem chi tiết
PQ
12 tháng 4 2018 lúc 16:33

Ta có : 

\(x^2-4x+5=\left(x^2-2.2x+2^2\right)+1=\left(x-2\right)^2+1\ge1>0\)

Vậy đa thức \(x^2-4x+5\) vô nghiệm với mọi giá trị của x 

Chúc bạn học tốt ~ 

Bình luận (0)
HY
Xem chi tiết
LD
26 tháng 7 2017 lúc 18:31

ta co A=4x^2-2x+3

A=4x^2-2x+1+2

a=

Bình luận (0)
PB
Xem chi tiết
CT
13 tháng 6 2019 lúc 2:33

y′ = 3 x 2  − 2(m + 4)x – 4

∆ ′ = m + 4 2  + 12

Vì  ∆ ’ > 0 với mọi m nên y’ = 0 luôn luôn có hai nghiệm phân biệt (và đổi dấu khi qua hai nghiệm đó). Từ đó suy ra đồ thị của (1) luôn luôn có cực trị.

Bình luận (0)
TC
Xem chi tiết
NH
28 tháng 6 2020 lúc 21:43

Xét phương trình :

\(x^2-4x-m^2+6m-5=0\)

\(\left(a=1;b=-4;c=-m^2+6m-5\right)\)

\(b'=-2\)

Ta có :

\(\Delta'=b'^2-ac\)

\(=\left(-2\right)^2-1.\left(-m^2+6m-5\right)\)

\(=4+m^2-6m+5\)

\(=m^2-6m+9\)

\(=\left(m-3\right)^2\ge0\)

\(\Leftrightarrow\) Phương trình luôn có nghiệm với mọi m

Theo định lý Viet ta có :

\(\left\{{}\begin{matrix}x_1+x_2=-\frac{b}{a}=-4\\x_1.x_2=\frac{c}{a}=-m^2+6m-5\end{matrix}\right.\)

Ta có :

\(P=x_1^3+x_2^3\)

\(=\left(x_1+x_2\right)\left(x_1^2-x_1.x_2+x_2^2\right)\)

\(=\left(x_1+x_2\right)\left[\left(x_1+x_2\right)^2-3x_1.x_2\right]\)

\(=\left(-4\right)^2\left[\left(-4\right)^2-3\left(-m^2+6m-5\right)\right]\)

\(=16\left[16+3m^2-18m+15\right]\)

\(=16\left(3m^2-18m+31\right)\)

\(=16.3\left(m^2-6m+9\right)+4\)

\(=48\left(m-3\right)^2+4\ge4\)

Dấu "=" xảy ra \(\Leftrightarrow m=3\)

Vậy...

Bình luận (0)
NA
Xem chi tiết
H24
26 tháng 4 2016 lúc 22:39

a) tính đen ta chứng minh đen ta luôn lớn hơn 0

b) dùng viet  tính tổng và tích hai nghiệm

Đưa A về dạng có chưa tổng tích hai nghiệm

Bình luận (0)