chứng minh bt luôn âm
a) 2+ 4x - x2
chứng minh biểu thức luôn âm
a)A=-2x^2+5x-4
b)B=x^2+5x+7
c)C=x^2-20x+101
a: A=-2(x^2-5/2x+2)
=-2(x^2-2*x*5/4+25/16+7/16)
=-2(x-5/4)^2-7/8<=-7/8<0 với mọi x
b: B=x^2+5x+25/4+3/4
=(x+5/2)^2+3/4>=3/4>0
=>B luôn dương với mọi x
c: C=x^2-20x+100+1
=(x-10)^2+1>=1>0 với mọi x
=>C luôn dương với mọi x
Chứng minh các phân thức sau luôn có nghĩa x 2 - 4 - x 2 + 4 x - 5
cho biểu thức A = ( x - 3 ) ( x2 + 3x + 9 ) - ( x - 1 )3 + 4 ( x + 2 ) ( 2 - x ) - x
a. Chứng minh A = - x2 - 4x - 10
b. Chứng minh A luôn có giá trị âm với mọi giá trị của số thực x
a: \(A=x^3-27-x^3+3x^2-3x+1-4\left(x^2-4\right)-x\)
\(=3x^2-4x-26-4x^2+16\)
\(=-x^2-4x-10\)
Cho phương trình bậc hai x^2-mx+m-3=0 Chứng minh rằng phương trình luôn có nghiệm với mọi m Tìm các giá trị m để phương trình có hai nghiệm x1 x2 sao cho bt A=2(x1+x2)-x1×x2) đạt giá trị nhỏ nhất
Ptr có:`\Delta=(-m)^2-4(m-3)=m^2-4m+12=(m-2)^2+8 > 0 AA m`
`=>` Ptr luôn có nghiệm `AA m`
`=>` Áp dụng Viét có:`{(x_1+x_2=[-b]/a=m),(x_1.x_2=c/a=m-3):}`
Ta có:`A=2(x_1 ^2+x_2 ^2)-x_1.x_2`
`<=>A=2[(x_1+x_2)^2-2x_1.x_2]-x_1.x_2`
`<=>A=2[m^2-2(m-3)]-(m-3)`
`<=>A=2(m^2-2m+6)-m+3`
`<=>A=2m^2-4m+12-m+3=2m^2-5m+15`
`<=>A=2(m^2-5/2+15/2)`
`<=>A=2[(m-5/4)^2+95/16]`
`<=>A=2(m-5/4)^2+95/8`
Vì `2(m-5/4)^2 >= 0 AA m<=>2(m-5/4)^2+95/8 >= 95/8 AA m`
Hay `A >= 95/8 AA m`
Dấu "`=`" xảy ra`<=>(m-5/4)^2=0<=>m=5/4`
Vậy `GTN N` của `A` là `95/8` khi `m=5/4`
Đề liệu cs sai 0 bạn nhỉ, ở cái biểu thức `A` í chứ nếu đề vậy thì 0 tìm đc GTNN đâu (Theo mik thì là vậy)
chứng tỏ các bất phương trình sau luôn nghiệm đungs với mọi x
x2 - 4x+5>0
chứng minh rằng -x2+4x-10/x2+1<0 với mọi x
tìm x để biểu thức x2-4x+5 đạt giá trị nhỏ nhất
tìm x để biểu thức -x2+4x+4 đạt giá trị lớn nhất
Ta có :
\(x^2-4x+5=\left(x^2-2.2x+2^2\right)+1=\left(x-2\right)^2+1\ge1>0\)
Vậy đa thức \(x^2-4x+5\) vô nghiệm với mọi giá trị của x
Chúc bạn học tốt ~
Chứng tỏ bt sau luôn âm hoặc luôn dương với mọi x:
A= 4x2-2x+3
Cho hàm số: y = x 3 − (m + 4) x 2 − 4x + m (1). Chứng minh rằng với mọi giá trị của m, đồ thị của hàm số (1) luôn luôn có cực trị.
y′ = 3 x 2 − 2(m + 4)x – 4
∆ ′ = m + 4 2 + 12
Vì ∆ ’ > 0 với mọi m nên y’ = 0 luôn luôn có hai nghiệm phân biệt (và đổi dấu khi qua hai nghiệm đó). Từ đó suy ra đồ thị của (1) luôn luôn có cực trị.
Cho phương trình x^2 -4x-m^2 +6m-5(1)
Chứng minh phương trình luôn có 2 nghiệm phân biệt
Giả sử x1,x2 là nghiệm của phương trình tìm GTNN của bt P=x1^3 +x2^3
Xét phương trình :
\(x^2-4x-m^2+6m-5=0\)
\(\left(a=1;b=-4;c=-m^2+6m-5\right)\)
\(b'=-2\)
Ta có :
\(\Delta'=b'^2-ac\)
\(=\left(-2\right)^2-1.\left(-m^2+6m-5\right)\)
\(=4+m^2-6m+5\)
\(=m^2-6m+9\)
\(=\left(m-3\right)^2\ge0\)
\(\Leftrightarrow\) Phương trình luôn có nghiệm với mọi m
Theo định lý Viet ta có :
\(\left\{{}\begin{matrix}x_1+x_2=-\frac{b}{a}=-4\\x_1.x_2=\frac{c}{a}=-m^2+6m-5\end{matrix}\right.\)
Ta có :
\(P=x_1^3+x_2^3\)
\(=\left(x_1+x_2\right)\left(x_1^2-x_1.x_2+x_2^2\right)\)
\(=\left(x_1+x_2\right)\left[\left(x_1+x_2\right)^2-3x_1.x_2\right]\)
\(=\left(-4\right)^2\left[\left(-4\right)^2-3\left(-m^2+6m-5\right)\right]\)
\(=16\left[16+3m^2-18m+15\right]\)
\(=16\left(3m^2-18m+31\right)\)
\(=16.3\left(m^2-6m+9\right)+4\)
\(=48\left(m-3\right)^2+4\ge4\)
Dấu "=" xảy ra \(\Leftrightarrow m=3\)
Vậy...
Cho pt x^2-4x-m^2-1=0.a) Chứng minh pt luôn có 2 nghiệm phân biệt với mọi m.b)TÍNH GIÁ TRỊ CỦA A=X1^2+X2^2 BIẾT 2X1^2+3X2^2=13
a) tính đen ta chứng minh đen ta luôn lớn hơn 0
b) dùng viet tính tổng và tích hai nghiệm
Đưa A về dạng có chưa tổng tích hai nghiệm