Những câu hỏi liên quan
CT
Xem chi tiết
YN
3 tháng 2 2023 lúc 22:14

Bài 1:

a)

\(\overline{abcd}=100\overline{ab}+\overline{cd}\)

\(=100.2\overline{cd}+\overline{cd}\)

\(=201\overline{cd}\)

Mà \(201⋮67\)

\(\Rightarrow\overline{abcd}⋮67\)

b)

\(\overline{abc}=100\overline{a}+10\overline{b}+\overline{c}\)

\(=\left(100\overline{b}+10\overline{c}+\overline{a}\right)+\left(99\overline{a}-90\overline{b}-9\overline{c}\right)\)

\(=\overline{bca}+9\left[\left(12\overline{a}-9\overline{b}\right)-\left(\overline{a}+\overline{b}+\overline{c}\right)\right]\)

\(=\overline{bca}+27\left(4\overline{a}-3\overline{b}\right)-\left(\overline{a}+\overline{b}+\overline{c}\right)⋮27\)

\(\Rightarrow\overline{bca}-\left(\overline{a}+\overline{b}+\overline{c}\right)⋮27\)

\(\Rightarrow\left\{{}\begin{matrix}\overline{bca}⋮27\\\overline{a}+\overline{b}+\overline{c}⋮27\end{matrix}\right.\)

\(\Rightarrow\overline{bca}⋮27\)

Bài 2:

\(\overline{abcd}=\overline{ab}.100+\overline{cd}\)

\(=\overline{ab}.99+\overline{ab}+\overline{cd}\)

\(=\overline{ab}.11.99+\left(\overline{ab}+\overline{cd}\right)\)

Mà \(11⋮11\)

\(\Rightarrow\overline{ab}.11.9⋮11\)

\(\Rightarrow\overline{abcd}⋮11\).

 

 

Bình luận (0)
CT
3 tháng 2 2023 lúc 19:54

Các bạn giải nhanh cho mình nhé. Thanks!

Bình luận (0)
DY
Xem chi tiết
YH
4 tháng 3 2021 lúc 18:35

\(abcd=101.ab=101.cd=abab=cdcd\)

Trong toán học, không thể xảy ra trường hợp

 \(abcd⋮101\) mà \(ab\ne cd\) vì một số có 2 chữ số nhân với 101 thì kết quả sẽ là số đó viết 2 lần liền nhau

\(\Rightarrow ab-cd=cd-ab=0\left(đpcm\right)\)

 

Bình luận (0)
DY
Xem chi tiết
H24
4 tháng 3 2021 lúc 15:33

Điều cần chưng minh là sai

Ví dụ: \(\overline{abcd}=7920⋮99\) nhưng \(79-20⋮̸99\) 

Bình luận (0)
DY
Xem chi tiết
GD
4 tháng 3 2021 lúc 17:33

Ta có: \(\overline{abcdeg}=10000\overline{ab}+100\overline{cd}+\overline{eg}=9999\overline{ab}+99\overline{cd}+\left(\overline{ab}+\overline{cd}+\overline{eg}\right)⋮11\)

 

 

Bình luận (0)
H24
Xem chi tiết
NT
4 tháng 10 2016 lúc 19:25

Ta có:

\(\overline{abcd}=100.\overline{ab}+\overline{cd}\)

\(=100.2.\overline{cd}+\overline{cd}\)

\(=200.\overline{cd}+\overline{cd}\)

\(=201.\overline{cd}⋮67\)

Vậy nếu \(\overline{ab}=2.\overline{cd}\) thì \(\overline{abcd}⋮67\)

Bình luận (0)
LL
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
NL
20 tháng 12 2017 lúc 20:13

b, 1028+8 chia hết cho 9

1028+8=(1027*10)+8=10009+8 chia hết cho 8

(8,9)=1 nên 1028+8 chia hết cho 27

Bình luận (0)
H24
Xem chi tiết
TD
5 tháng 10 2016 lúc 21:56

ta co:

abcd=ab00+cd=100 .ab+cd ma ab=2cd

=>abcd=100.2.cd=201.cd=3.67.cd

=> dpcm

 

Bình luận (0)