rut gon 1 + 7 + 7^2 + ... +7^101
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
rut gon 1+7^2+7^3+7^4+...+7^99
Đặt \(A=1+7^2+7^3+7^4+...+7^{99}\)
\(\Rightarrow7A=7\left(1+7^2+7^3+7^4+...+7^{99}\right)\)
\(\Rightarrow7A=7+7^3+7^4+7^5+...+7^{100}\)
\(\Rightarrow7A-A=\left(7+7^3+7^4+7^5+...+7^{100}\right)-\left(1+7^2+7^3+7^4+...+7^{99}\right)\)
\(\Rightarrow6A=7^{100}-1\)
\(\Rightarrow A=\frac{7^{100}-1}{6}\)
đặt S = 1 + 72 + 73 + 74 + .... + 799
=> 7S = 7 + 73 + 74 + 75 + .... 7100
=> 7S - S = (7 + 73 + 74 + 75 + .... + 7100) - (1 + 72 + 73 + 74 + .... + 799)
=> 6S = (7 + 7100) - (1 + 72)
=> 6S = (7 - 1) + (7100 - 72)
=> 6S = 6 + 7100 - 72
=> S = \(\frac{6+7^{100}-7^2}{6}\)
rut gon : M = 1+7+7^2+7^3+7^4+...................................+7^100
\(7M=7+7^2+7^3+...+7^{101}\)
\(7M-M=\left(7+7^2+...+7^{101}\right)-\left(1+7+..+7^{100}\right)\)
\(6M=7^{101}-1\)
\(M=\frac{7^{101}-1}{6}\)
rut gon bieu thuc :5/11*5/7+5/11*2/7+6/11
=\(\dfrac{5}{11}\left(\dfrac{5}{7}+\dfrac{2}{7}\right)+\dfrac{6}{11}\)
=\(\dfrac{5}{11}\times1+\dfrac{6}{11}\)
=\(\dfrac{11}{11}\)=1
\(\dfrac{5}{11}\cdot\dfrac{5}{7}+\dfrac{5}{11}\cdot\dfrac{2}{7}+\dfrac{6}{11}=\dfrac{5}{11}\cdot\left(\dfrac{5}{7}+\dfrac{2}{7}\right)+\dfrac{6}{11}=\dfrac{5}{11}\cdot1+\dfrac{6}{11}=\dfrac{5}{11}+\dfrac{6}{11}=1\)
rut gon bieu thuc (6x+7)(2x-3)-(4x+1)(3x-7/4)
rut gon 10^2+8^2+...+2^2+(9^2+7^2+...+1^2)
rut gon 10^2+8^2+...+2^2+(9^2+7^2+...+1^2)
rut gon
5/2 can 7
rut gon
A=(4x+5)^2-(3x-7)^2-(4x-1)(4x+1)
\(A=\left(4x+5\right)^2-\left(3x-7\right)^2-\left(4x-1\right)\left(4x+1\right)\)
\(=\left(4x\right)^2+2.4x.5+5^2-\left[\left(3x\right)^2-2.3x.7+7^2\right]-\left[\left(4x\right)^2-1^2\right]\)
\(=16x^2+40x+25-\left(9x^2-42x+49\right)-\left(16x^2-1\right)\)
\(=16x^2+40x+25-9x^2+42x-49-16x^2+1=-9x^2+82x-23\)
A=(4x+5)2-(3x-7)2-(4x-1)(4x+1)
=16x2+40x+25-9x2+42x-49-16x2+1
=(16x2-9x2-16x2)+(40x+42x)+(25-49+1)
=-9x2+82x-23
rut gon P= 1+-3+5+-7+...+17+-19
P=1+(-3)+5+(-7)+...17+(-19)
P=(-2)+(-2)+...+(-2)
P=(-2). 9,5 ( vì có 9,5 số -2)
P= -19