Những câu hỏi liên quan
BF
Xem chi tiết
NH
Xem chi tiết
NA
15 tháng 2 2021 lúc 21:37

Có : ( 16a + 17b ) ( 17a + 16b ) : 11 ( vì 11 là số nguyên tố )

= 16a + 17b : 11

    17a + 16b : 11

=G/s 16a + 17b : 11(1)

Mà ( 16a + 17b ) + ( 17a + 16b ) = ( 33a + 33b ) = 11 ( 3a + 3b ) : 11

= 17a + 16b : 11(2)

Từ ( 1 ) , ( 2 ) = ( 16a + 17b ) ( 17a  +16b ) : 121

Bình luận (0)
 Khách vãng lai đã xóa
.
15 tháng 2 2021 lúc 22:08

Ta có: \(\left(16a+17b\right)\left(17a+16b\right)⋮11\)

\(\Rightarrow\orbr{\begin{cases}16a+17b⋮11\\17a+16b⋮11\end{cases}}\)

Giả sử \(16a+17b⋮11\)

\(\Rightarrow16a+17b+17a+16b=\left(16a+17a\right)+\left(17b+16b\right)=33a+33b=33\left(a+b\right)\)

Vì \(33⋮11\) nên \(33\left(a+b\right)⋮11\)

Mà \(16a+17b⋮11\)

\(\Rightarrow17a+16b⋮11\)

Lại có: 11 là số nguyên tố

\(\Rightarrow\left(16a+17b\right)\left(17a+16b\right)⋮11^2=121\)

Vậy \(\left(16a+17b\right)\left(17a+16b\right)⋮121\).

Bình luận (0)
 Khách vãng lai đã xóa
NN
Xem chi tiết
H24
Xem chi tiết
CM
Xem chi tiết
MN
Xem chi tiết
TA
Xem chi tiết
NC
12 tháng 11 2019 lúc 18:03

Câu hỏi của lekhanhhung - Toán lớp 7 - Học toán với OnlineMath

Bình luận (0)
 Khách vãng lai đã xóa
NB
Xem chi tiết
H24
Xem chi tiết
NC
12 tháng 11 2019 lúc 18:02

Ta có: \(\left(16a+17b\right)\left(17a+16b\right)⋮11\) Vì 11 là số nguyên tố

=> \(\orbr{\begin{cases}16a+17b⋮11\\17a+16b⋮11\end{cases}}\)

Không mất tính tổng quát. G/S: \(16a+17b⋮11\). (1)

Chúng ta chứng minh: \(17a+16b⋮11\)

Vì \(16a+17b⋮11\)

=> \(2\left(16a+17b\right)⋮11\)

=> \(32a+34b⋮11\)

=> \(\left(33a+33b\right)-\left(a-b\right)⋮11\)

Vì \(33a+33b=11\left(3a+3b\right)⋮11\)

=> \(\left(a-b\right)⋮11\)

=> \(\left(33a+33b\right)+\left(a-b\right)⋮11\)

=> \(34a+32b⋮11\)

=> \(2\left(17a+16b\right)⋮11\) mà 2 không chia hết cho 11

=> \(17a+16b⋮11\) (2)

Từ (1) và (2) => \(\left(17a+16b\right)\left(16a+17b\right)⋮\left(11.11\right)\)

=> \(\left(17a+16b\right)\left(16a+17b\right)⋮121\)

Bình luận (0)
 Khách vãng lai đã xóa
NC
12 tháng 11 2019 lúc 18:08

Cách khác: 

Có: \(\left(16a+17b\right)\left(17a+16b\right)⋮11\) ( vì 11 là số nguyên tố)

=>  \(\orbr{\begin{cases}16a+17b⋮11\\17a+16b⋮11\end{cases}}\)

G/s: \(16a+17b⋮11\)(1)

Mà \(\left(16a+17b\right)+\left(17a+16b\right)=\left(33a+33b\right)=11\left(3a+3b\right)⋮11\)

=> \(17a+16b⋮11\)(2)

Từ (1); (2) =>  \(\left(16a+17b\right)\left(17a+16b\right)⋮121\)

Bình luận (0)
 Khách vãng lai đã xóa