Chứng minh rằng nếu n là số tự nhiên lớn hơn 0 thì 5n+1995 chia hết cho 20
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Chứng minh rằng :nếu n là số tự nhiên khác 0 thì 5^n +1995 chia hết cho 20
Chứng minh rằng : nếu n là một số tự nhiên khác 0 thì 5^n+1995 chia hết cho 20
Chứng minh rằng : nếu n là số tự nhiên khác 0 thì 5^n + 1995 chia hết cho 20
Chứng minh rằng:nếu n la số tự nhiên khác 0 thì 5^n +1995 chia hết cho 20
cho a và b là hai số tự nhiên lớn hơn 0. chứng minh rằng nếu (16a +17b).(17a+16b) chia hết cho 11 thì tích có ít nhất 1 ước là số chính phương.
Đặt tích: \(\left(16a+17b\right)\left(17a+16b\right)=P\)
\(P=\left[11\left(2a+b\right)-6\left(a-b\right)\right]\cdot\left[11\left(2a+b\right)-5\left(a-b\right)\right]\)
P chia hết cho 11 thì
Hoặc thừa số thứ nhất \(\left[11\left(2a+b\right)-6\left(a-b\right)\right]\) chia hết cho 11 => (a - b) chia hết cho 11 => Thừa số thứ 2: \(\left[11\left(2a+b\right)-5\left(a-b\right)\right]\)cũng chia hết cho 11. Do đó P chia hết cho 112.Và ngược lại, Thừa số thứ 2 chia hết cho 11 ta cũng suy được thừa số thứ 1 cũng chia hết cho 11 và P cũng chia hết cho 112.Vậy, P luôn có ít nhất 1 ước chính phương (khác 1) là 112. ĐPCM
Cho số tự nhiên n lớn hơn 3. Chứng minh rằng nếu \(2^n=10a+b\left(a,b\inℕ,0< b< 10\right)\)thì tích ab chia hết cho 6
CMR nếu n là số tự nhiên lớn hơn 0 thì: 5n+9915 chia hết cho 20
+A =5n + 9915 chia hết cho 5
+ A = 5n +9915 = 9916 +( 5n -1 ) = 9916 +( ....25 - 1 ) = 9916 + ....24 chia hết cho 4
mà (4;5) =1
=> A chia hết cho 4.5 =20
1. Cho n là số tự nhiên không chia hết cho 3
Chứng minh rằng : ( 5n+1 ).(5n+2) chia hết cho 3
2. Cho p là số nguyên tố lớn hơn 3 sao cho p+2 cũng là số nguyên tố : Chứng minh rằng :p+1 chia hết cho 6
3. Tìm các số tự nhiên x và y sao cho:
x-3= xy + 2y
4. Tìm n thuộc Z sao cho: n2 +3 chia hết cho n-1
GIẢI HỘ MK ,AI NHANH THÌ MK TICK!
1. n không chia hết cho 3 suy ra n = 3k +1 hoặc n = 3k +2.
- nếu n = 3k +1 thì 5n + 1 = 5(3k +1) +1 = 15k + 6 ⋮ 3.
- nếu n = 3k +2 thì 5n + 2 = 5(3k + 2) +2 = 15k + 12 ⋮ 3
2. p là số nguyên tố lớn hơn 3 nên p sẽ có dạng 6k + 1 hoặc 6k + 5.
nếu p là 6k + 1 thì p + 2 = 6k + 3 ⋮ 3, không là số nguyên tố
do đó p có dạng 6k+5, khi đó p + 1 = 6k : 6 ⋮ 6.
3.
x(1-y) + 2(1-y) = 5
(x+2)(1-y) = 5
xét các trường hợp : x + 2 = 1; 1 - y = 5 và x + 2 = 5, 1 - y =1
4. ta có: n\(^2\) + 3 = (n+1)(n-1) + 4 ⋮ (n-1) khi 4 ⋮ (n-1), khi đó (n-1) \(\in\) Ư(4) .
Câu hỏi của bạn được mình trả lời ở đây: Bài post của nguyễn mai phương
1/ Tìm số tự nhiên n để A = 12n 2 - 5n - 25 là số nguyên tố.
2/ Chứng minh rằng: 2n + 1, 3n + 1 (n là số tự nhiên ) đều là số chính phương thì n chia hết cho 20
biết thì trả lời đi đừng nói linh tinh nữa