Ta có : \(5^n⋮5,1995⋮5\)
nên \(5^n+1995⋮5\)(1)
Mặt khác : \(5^n+1995=\left(5^n-1\right)+1994\)
mà \(5^n-1⋮4,1994⋮4\)
nên \(\left(5^n-1\right)+1994⋮4\)
hay \(5^n+1995⋮4\)(2)
từ (1) và (2) \(\Rightarrow5^n+1995⋮20\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Ta có : \(5^n⋮5,1995⋮5\)
nên \(5^n+1995⋮5\)(1)
Mặt khác : \(5^n+1995=\left(5^n-1\right)+1994\)
mà \(5^n-1⋮4,1994⋮4\)
nên \(\left(5^n-1\right)+1994⋮4\)
hay \(5^n+1995⋮4\)(2)
từ (1) và (2) \(\Rightarrow5^n+1995⋮20\)
Giả sử n là số tự nhiên thỏa mãn n(n+1) không chia hết cho 7. Chứng minh rằng 4n^3-5n-1 không là số chính phương
cho a là số tự nhiên lớn hơn 5 và không chia hết cho 5
chứng minh rằng a\(^{8n}\)+3a\(^{4n}\)- 4 chia hết cho 5, với mọi số tự nhiên n.
Giả sử n là số tự nhiên thỏa mãn điều kiện n(n+1)+7 không chia hết cho 7. Chứng minh rằng 4n^3-5n-1 không là số chinh phương
Giả sử n là số tự nhiên thỏa mãn n(n + 1) + 7 không chia hết cho 7. Chứng minh rằng 4n
3 − 5n − 1 không là số chính phương.
Xl vì táu ngu :<
Chứng minh rằng nếu số nguyên n lớn hơn 1 thoả mãn n2 + 4 và n2 +16 là các số nguyên tố thì n chia hết cho 5.
chứng minh rằng nếu số nguyên n lớn hơn 1 thỏa mãn n^2+4 và n^2+16 là các số nguyên tố thì n chia hết cho 5
bài 1 : cho n là số tự nhiên lớn hơn 1 . Chứng minh rằng : n4+4n là hợp số
bài 2 : tìm số tự nhiên n sao cho 3n+55 là số chính phương
bài 3 : cho a+1 và 2a+1 ( n ( N ) đồng thời là hai số chính phương . Chứng minh rằng a chia hết cho 24
Chứng minh các định lí sau đây bằng phương pháp phản chứng:
a) Nếu a + b < 2 thì một trong hai số a và b phải nhỏ hơn 1;
b) Cho n là số tự nhiên, nếu 5n + 4 là số lẻ thì n là số lẻ.
chứng minh định lí sau bằng phản chứng:
"nếu n là số tự nhiên và n^2 chia hết cho 5 thì n chia hết cho 5"