Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
MQ
Xem chi tiết
HS
14 tháng 3 2020 lúc 9:06

Tích của bốn số \(x^2-11,x^2-8,x^2-5,x^2-2\) là số âm nên phải có một hoặc ba số âm

Ta có : \(x^2-11< x^2-8< x^2-5< x^2-2\).Xét hai trường hợp :

Trường hợp 1: Có một số âm,ba số dương :

\(x^2-11< 0< x^2-8\)=> \(8< x^2< 11\)=> \(x^2=9\)(do \(x\inℤ\)) => \(x=\pm3\)

Trường hợp 2: Có một số dương,ba số âm :

\(x^2-5< 0< x^2-2\)=> \(2< x^2< 5\)=> \(x^2=4\)(do \(x\inℤ\)) => \(x=\pm2\)

Vậy : ...

Bình luận (0)
 Khách vãng lai đã xóa
LP
Xem chi tiết
PT
6 tháng 8 2023 lúc 18:18

1. Để tìm các đa thức P(x) thỏa mãn điều kiện P(2014) = 2046 và P(x) = P(x^2 + 1) - 33 + 32, ∀x ≥ 0, ta có thể sử dụng phương pháp đệ quy. Bước 1: Xác định bậc của đa thức P(x). Vì không có thông tin về bậc của đa thức, chúng ta sẽ giả sử nó là một hằng số n. Bước 2: Xây dựng công thức tổng quát cho đa thức P(x). Với bậc n đã xác định, ta có: P(x) = a_n * x^n + a_{n-1} * x^{n-1} + ... + a_0 Bước 3: Áp dụng điều kiện để tìm các hệ số a_i. Thay x = 2014 vào biểu thức và giải phương trình: P(2014) = a_n * (2014)^n + a_{n-1} * (2014)^{n-1} + ... + a_0 = 2046 Giải phương trình này để tìm các giá trị của các hệ số. Bước 4: Áp dụng công thức tái lập để tính toán các giá trị tiếp theo của P(x): P(x) = P(x^2+1)-33+32 Áp dụng công thức này lặp lại cho đến khi đạt được kết quả cuối cùng. 2. Để tìm các đa thức P(x) ∈ Z[x] bậc n thỏa mãn điều kiện [P(2x)]^2 = 16P(x^2), ∀x ∈ R, ta có thể sử dụng phương pháp đệ quy tương tự như trên. Bước 1: Xác định bậc của đa thức P(x). Giả sử bậc của P(x) là n. Bước 2: Xây dựng công thức tổng quát cho P(x): P(x) = a_n * x^n + a_{n-1} * x^{n-1} + ... + a_0 Bước 3: Áp dụng điều kiện để tìm các hệ số a_i. Thay x = 2x vào biểu thức và giải phương trình: [P(2x)]^2 = (a_n * (2x)^n + a_{n-1} * (2x)^{n-1} + ... + a_0)^2 = 16P(x^2) Giải phương trình này để tìm các giá trị của các hệ số. Bước 4: Áp dụng công thức tái lập để tính toán các giá trị tiếp theo của P(x): [P(4x)]^2 = (a_n * (4x)^n + a_{n-1} * (4x)^{n-1} + ... + a_0)^2 = 16P(x^2) Lặp lại quá trình này cho đến khi đạt được kết quả cuối cùng.

 

Bình luận (0)
TL
Xem chi tiết
LP
Xem chi tiết
H24
Xem chi tiết
ZZ
29 tháng 3 2019 lúc 17:21

\(\left|x+5\right|\le2\Rightarrow-2\le x+5\le2\)

\(\Rightarrow x+5\in\left\{-2;-1;0;1;2\right\}\)

\(\Rightarrow x\in\left\{-7;-6;-5;-4;-3\right\}\)

Bình luận (0)
ZZ
29 tháng 3 2019 lúc 17:25

\(\left(x^2-5\right)\left(x^2-10\right)\left(x^2-15\right)\left(x^2-20\right)< 0\)

Xét 2 trường hợp:

TH1:Trong 4 số có 3 số âm 1 số dương.

Theo bài ra,ta có:\(\hept{\begin{cases}x^2-5>0\\x^2-10< 0\end{cases}}\Rightarrow\hept{\begin{cases}x^2>5\\x^2>10\end{cases}\Rightarrow}5< x^2< 10\Rightarrow x=3\left(h\right)x=-3\)

TH2:Trong 4 số có 3 số dương,1 số âm.

Theo bài ra,ta có:\(\hept{\begin{cases}x^2-20< 0\\x^2-15>0\end{cases}\Rightarrow}\hept{\begin{cases}x^2< 20\\x^2>15\end{cases}}\Rightarrow15< x^2< 20\Rightarrow x=4\left(h\right)x=-4\)

Vậy \(x\in\left\{3;-3;4;-4\right\}\)

Bình luận (0)
NK
29 tháng 3 2019 lúc 19:51

b)Dạng này lập bảng xét dấu cho lẹ chứ nhớ công thức 3 số âm 1 số dương..gì đó mà dạng này có dạng tới tận 5 - 6 thừa số thì nhớ sao nổi. @zZz Phan Gia Huy zZz

Bình luận (0)
TD
Xem chi tiết
LC
Xem chi tiết
KB
3 tháng 2 2019 lúc 14:32

xảy ra 2 t/hợp:

+nếu x-5=0=>x=5

+nếu x+6=0=>x=-6

vì x thuộc z nên x={5,-6}

Bình luận (0)
NH
3 tháng 2 2019 lúc 14:34

\(\left(x-5\right)\times\left(x+6\right)=0\)

\(\Rightarrow x-5=0\)hoặc \(x+6=0\)

+> TH1: 

 \(x-5=0\)

\(x=0+5\)

\(x=5\)

+> TH2:

\(x+6=0\)

\(x=0-6\)

\(x=-6\)

Vậy x = 5 hoặc x = -6 .

Bình luận (0)
H24
3 tháng 2 2019 lúc 14:35

(x - 5)(x + 6) = 0

Xét 2 trường hợp:

TH1: x - 5 = 0

<=> x = 0 + 5

       x = 5

TH2: x + 6 = 0

<=> x = 0 - 6

       x = -6

=> x = 5 hoặc -6

Bình luận (0)
PL
Xem chi tiết
LL
26 tháng 12 2021 lúc 16:19

a) \(\Rightarrow\dfrac{1}{3}x\left(x-2\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)

b) \(\Rightarrow\left(x+5\right)\left(x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=-5\\x=1\end{matrix}\right.\)

c) \(\Rightarrow x\left(x^2-\dfrac{1}{9}\right)=0\Rightarrow x\left(x-\dfrac{1}{3}\right)\left(x+\dfrac{1}{3}\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{3}\\x=-\dfrac{1}{3}\end{matrix}\right.\)

e) \(\Rightarrow\left(x+2\right)\left(x+2-x+2\right)=0\Rightarrow\left(x+2\right).4=0\Rightarrow x=-2\)

f) \(\Rightarrow x\left(2x-3\right)+2\left(2x-3\right)=0\Rightarrow\left(2x-3\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-2\end{matrix}\right.\)

g) \(\Rightarrow2\left(3x-2\right)^2-\left(3x-2\right)\left(3x+2\right)=0\Rightarrow\left(3x-2\right)\left(3x-6\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=2\end{matrix}\right.\)

h) \(\Rightarrow x\left(x+1\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=-2\end{matrix}\right.\)

i) \(\Rightarrow4x\left(x+1\right)+5\left(x+1\right)=0\Rightarrow\left(x+1\right)\left(4x+5\right)=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=-\dfrac{5}{4}\end{matrix}\right.\)

Bình luận (0)
TH
Xem chi tiết
TT
2 tháng 3 2020 lúc 19:01

Đặt \(a=24-x,b=x-25\)

Khi đó pt ban đầu trở thành :

\(\frac{a^2+ab+b^2}{a^2-ab+b^2}=\frac{19}{49}\)

\(\Leftrightarrow49\left(a^2+ab+b^2\right)=19\left(a^2-ab+b^2\right)\)

\(\Leftrightarrow30a^2+68ab+30b^2=0\)

\(\Leftrightarrow15a^2+34ab+15b^2=0\)

\(\Leftrightarrow\left(3a+5b\right)\left(5a+3b\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}3a=-5b\\5a=-3b\end{cases}}\)

Đến đây bạn thay vào là dễ rồi nhé ! Chúc bạn học tốt !

Bình luận (0)
 Khách vãng lai đã xóa