Những câu hỏi liên quan
NV
Xem chi tiết
PV
Xem chi tiết
XO
19 tháng 7 2020 lúc 15:41

Ta có : C = \(\frac{9n-2}{3n+1}=\frac{9n+3-5}{3n+1}=\frac{3\left(3n+1\right)-5}{3n+1}=3-\frac{5}{3n+1}\)

Vì \(3\inℤ\)

=> \(C\inℤ\Leftrightarrow\frac{-5}{3n+1}\inℤ\Rightarrow-5⋮3n+1\Rightarrow3n+1\inƯ\left(-5\right)\)

=> \(3n+1\in\left\{1;5;-1;-5\right\}\)

=> \(3n\in\left\{0;4;-2;-6\right\}\)

Vì n \(\inℤ\)

=> \(n\in\left\{0;-2\right\}\)

Bình luận (0)
 Khách vãng lai đã xóa
TM
19 tháng 7 2020 lúc 15:47

Bg

Để \(C=\frac{9n-2}{3n+1}\inℤ\)(n \(\inℕ\)) thì 9n - 2 \(⋮\)3n + 1

Vì 9n - 2 \(⋮\)3n + 1

Nên (9n - 2) - 3.(3n + 1) \(⋮\)3n + 1

=> 9n - 2 - 9n + 9  \(⋮\)3n + 1

=> 9n - 9n + (9 - 2)  \(⋮\)3n + 1

=> 7  \(⋮\)3n + 1

=> 3n + 1 \(\in\)Ư(7)

Ư(7) = {1; 7}

=> 3n + 1 = 1 hay 7

     3n       = 1 - 1 hay 7 - 1

     3n       = 0 hay 6

       n       = 0 : 3 hay 6 : 3

       n       = 0 hay 2

Vậy n = 0 hoặc n = 2

Bình luận (0)
 Khách vãng lai đã xóa
TM
19 tháng 7 2020 lúc 15:50

Lại sai r

Bình luận (0)
 Khách vãng lai đã xóa
TA
Xem chi tiết
TD
Xem chi tiết
PQ
7 tháng 4 2018 lúc 20:30

* Tìm GTNN : 

Ta có : 

\(A=\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=\frac{n-2}{n-2}+\frac{3}{n-2}=1+\frac{3}{n-2}\)

Để A đạt GTNN thì \(\frac{3}{n-2}\) phải đạt GTNN hay \(n-2< 0\) và đạt GTLN 

\(\Rightarrow\)\(n-2=-1\)

\(\Rightarrow\)\(n=1\)

Suy ra : 

\(A=\frac{n+1}{n-2}=\frac{1+1}{1-2}=\frac{2}{-1}=-2\)

Vậy \(A_{min}=-2\) khi \(n=1\)

Chúc bạn học tốt ~ 

Bình luận (0)
H24
Xem chi tiết
NA
11 tháng 4 2018 lúc 20:15

\(\text{a) Để B có giá trị nguyên thì}\)

\(10n⋮\left(5n-3\right)\)

\(\Rightarrow[2.\left(5n-3\right)+6⋮\left(5n-3\right)\)

\(\text{mà }\)\(2.\left(5n-3\right)⋮\left(5n-3\right)\)

\(\Rightarrow6⋮\left(5n-3\right)\)

\(\Rightarrow5n-3\in1;2;3;6;-1;-2;-3;-6\)

\(\Rightarrow5n\in4;5;6;9;2;1;0;-3\)\(\text{Vì }n\in Z\)

\(\Rightarrow n=0\text{hoặc}n=1\)

\(\text{b) Ta có}:B=\frac{10n}{5n-3}=\frac{2.\left(5n-3\right)+6}{5n-3}=2+\frac{6}{5n-3}\)

\(\text{Để B đạt GTLN thì }\frac{6}{5n-3}\text{đạt GTLN}\)

\(\text{Vì }6>0\Rightarrow\frac{6}{5n-3}\text{đạt GTLN khi}\) \(5n-3\text{ đạt GTLN }\)\(\Rightarrow\hept{\begin{cases}5n-3\text{ đạt GTNN}\\5n-3>0\end{cases}}\)

\(\Rightarrow5n-3=2\Rightarrow n=1\)

\(\text{Vậy GTLN của A là}\)\(5\)\(\text{khi }n=1\)

Bình luận (0)
PH
Xem chi tiết
LT
7 tháng 5 2017 lúc 10:18

\(\frac{A}{n}=\frac{4n+4}{n}=4+\frac{4}{n}\)
\(\Rightarrow n\in U\left(4\right)\)
Lập bảng tiếp nhé!
\(\frac{B}{n}=\frac{5n+6}{n}=5+\frac{6}{n}\)
Lập bảng

\(2.\)
a)\(\left(\frac{3}{29}-\frac{1}{5}\right)\cdot\frac{29}{3}=\frac{3}{29}\cdot\frac{29}{3}-\frac{1}{5}\cdot\frac{29}{3}=1-\left(1+\frac{14}{15}\right)=1-1-\frac{14}{15}=\frac{14}{15}\)
b)\(\frac{1}{7}\cdot\frac{5}{9}+\frac{5}{9}\cdot\frac{1}{7}+\frac{5}{9}\cdot\frac{3}{7}=\frac{5}{9}\cdot\left(\frac{1}{7}+\frac{1}{7}+\frac{3}{7}\right)=\frac{5}{9}\cdot\frac{5}{7}=\frac{25}{63}\)

Bình luận (0)
MH
Xem chi tiết
TM
3 tháng 1 2022 lúc 22:43

lolang

Không ai bt làm::(

 

Bình luận (1)
H24
Xem chi tiết
H24
31 tháng 8 2020 lúc 12:53

\(A=\left\{0,1,2,3\right\}\)

vì \(\hept{\begin{cases}X\subset A\\X\subset B\end{cases}}\)nên \(X=\left\{a\in R|a\ge0\right\}\)

Bình luận (0)
 Khách vãng lai đã xóa
CR
Xem chi tiết