Những câu hỏi liên quan
NT
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
TD
Xem chi tiết
TK
Xem chi tiết
AN
10 tháng 11 2017 lúc 9:57

1/ Ta có:

\(a^5-a^3+a=2\)

Dễ thấy a = 0 không phải là nghiệm từ đó ta có:

\(a^6-a^4+a^2=2a\)

\(\Rightarrow2a=a^6+a^2-a^4\ge2a^4-a^4\ge a^4\)

\(\Rightarrow\hept{\begin{cases}2a\ge a^4\\a>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2\ge a^3\\a>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}4\ge a^6\\a>0\end{cases}}\)

Dấu = không xảy ra 

Vậy \(a^6< 4\)

Bình luận (0)
AN
9 tháng 11 2017 lúc 15:36

Câu 2/

Câu hỏi của XPer Miner - Toán lớp 9 - Học toán với OnlineMath

Bình luận (0)
TT
9 tháng 11 2017 lúc 21:02

Bạn tham khảo cách làm của bạn Alibabba nguyễn nha!!

Bình luận (0)
VT
Xem chi tiết
TD
24 tháng 5 2018 lúc 16:56

a) Nhân cả tử và mẫu với 2 . 4 . 6 ... 40 ta được :

\(\frac{1.3.5...39}{21.22.23...40}=\frac{\left(1.3.5...39\right).\left(2.4.6...40\right)}{\left(21.22.23...40\right).\left(2.4.6...40\right)}\)

\(=\frac{1.2.3...39.40}{1.2.3...40.2^{20}}=\frac{1}{2^{20}}\)

b) Nhân cả tử và mẫu với 2 . 4 . 6 ... 2n ta được :

\(\frac{1.3.5...\left(2n-1\right)}{\left(n+1\right)\left(n+2\right)\left(n+3....2n\right)}=\frac{1.3.5...\left(2n-1\right).\left(2.4.6...2n\right)}{\left(n+1\right)\left(n+2\right)...\left(2n\right).\left(2.4.6...2n\right)}\)

\(=\frac{1.2.3...\left(2n-1\right).2n}{1.2.3...2n.2^n}=\frac{1}{2^n}\)

Bình luận (0)
CN
Xem chi tiết
TM
Xem chi tiết