A.Tính:
A=-(1-1/2).(1-1/3).(1-1/4)........(1-225).(1-226)+1 1/5
a) A = \(3\frac{1}{117}.4\frac{1}{119}-1\frac{116}{117}.5\frac{118}{119}-\frac{5}{119}\)
b) B = \(4\frac{1}{115}.1\frac{1}{225}-5\frac{114}{115}.1\frac{224}{225}-\frac{10}{225}\)
cho C = 1+4+4 mũ 2 + 4mũ 3 + 4 mũ 5 +....4mũ 600
A. a.tính 4A
B.chứng minh : A = ( 4 mũ 601 - 1 ) : 3. C. ***Chứng minh A-1 luôn chia hết cho 84.
Tính :\(A=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+....+\frac{1}{225\sqrt{224}+224\sqrt{225}}\)
Sorry mới lớp 6 chưa học
thông cảm
no chửi
Ta có:
\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n\left(n+1\right)}.\left(\sqrt{n}+\sqrt{n+1}\right)}\)
\(=\frac{1}{\sqrt{n\left(n+1\right)}.\left(\sqrt{n}+\sqrt{n+1}\right)}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Thế vào bài toán ta được
\(A=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{225\sqrt{224}+224\sqrt{225}}\)
\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{224}}-\frac{1}{\sqrt{225}}\)
\(=1-\frac{1}{\sqrt{225}}=1-\frac{1}{15}=\frac{14}{15}\)
Tính giá trị biểu thức :
a ) A = \(3\frac{1}{7}.4\frac{1}{119}-1\frac{116}{117}.5\frac{118}{119}-\frac{5}{119}\)
b ) B = \(4\frac{1}{115}.3\frac{1}{225}-5\frac{114}{115}.1\frac{224}{225}-\frac{10}{225}\)
Tính giá trị biểu thức sau :
a) A = \(3\dfrac{1}{117}.4\dfrac{1}{119}-1\dfrac{116}{117}.5\dfrac{118}{119}-\dfrac{5}{119}\)
b) B = \(4\dfrac{1}{115}.3\dfrac{1}{225}-5\dfrac{114}{115}.1\dfrac{224}{225}-\dfrac{10}{225}\)
Tính:
\(A=\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+\dfrac{1}{4\sqrt{3}+3\sqrt{4}}+...+\dfrac{1}{225\sqrt{224}+224\sqrt{225}}\)
Giải:
Ta có tính chất tổng quát:
\(\frac{1}{\left(k+1\right)\sqrt{k}+k\left(\sqrt{k+1}\right)}=\frac{\left(k+1\right)\sqrt{k}-k\left(\sqrt{k+1}\right)}{\left(k+1\right)^2k-k^2\left(k+1\right)}\)
\(=\frac{\left(k+1\right)\sqrt{k}-k\left(\sqrt{k+1}\right)}{\left(k+1\right)k\left(k+1-k\right)}=\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k+1}}\)
Áp dụng vào biểu thức
\(\Rightarrow A=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{224}}-\frac{1}{\sqrt{225}}\)
\(=1-\frac{1}{\sqrt{225}}\)
CMR: 1+1/2+1/3+1/4+...+1/225+2/256>5
a.Tính A = 1,2 + 2 ,3 + 3 ,4 + ... + n ( n +1 )
b.Tính B = 1 + 2 + 3 + ... + 98 + 99
c.Tính C = 1 + 3 +5 + ... + 997 + 999
Tính:
\(A=\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+\dfrac{1}{4\sqrt{3}+3\sqrt{4}}+...+\dfrac{1}{225\sqrt{224}+224\sqrt{225}}\)