Những câu hỏi liên quan
TD
Xem chi tiết
NV
19 tháng 9 2015 lúc 21:46

\(=\frac{1+a}{2\sqrt{a}-a}.\frac{2\sqrt{a}-a}{-\left(1+\sqrt{a}\right)}=\frac{-\left(1+a\right)}{1+\sqrt{a}}\)

Bình luận (0)
AF
Xem chi tiết
TA
1 tháng 11 2020 lúc 20:21

\(M=\left(\frac{2+\sqrt{a}}{\left(\sqrt{a}+1\right)^2}-\frac{\sqrt{a}-2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\frac{a\left(\sqrt{a}+1\right)-\left(\sqrt{a}+1\right)}{a}\)

\(=\frac{\left(2+\sqrt{a}\right)\left(\sqrt{a}-1\right)-\left(\sqrt{a}-2\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{a}+1\right)^2\left(\sqrt{a}-1\right)}\cdot\frac{\left(\sqrt{a}-1\right)\left(a-1\right)}{a}\)

\(=\frac{2\sqrt{a}-2+a-\sqrt{a}-a-\sqrt{a}+2\sqrt{a}+2}{\left(\sqrt{a}+1\right)\left(a-1\right)}\cdot\frac{\left(\sqrt{a}-1\right)\left(a-1\right)}{a}\)

\(=\frac{2\sqrt{a}}{\left(\sqrt{a}+1\right)\left(a-1\right)}\cdot\frac{\left(\sqrt{a}-1\right)\left(a-1\right)}{a}\)

\(=\frac{2\sqrt{a}\left(\sqrt{a-1}\right)}{a\left(\sqrt{a}+1\right)}=\frac{2\left(\sqrt{a}-1\right)}{\sqrt{a}\left(\sqrt{a}+1\right)}\)

Bình luận (0)
 Khách vãng lai đã xóa
TA
1 tháng 11 2020 lúc 20:29

\(N=\left(\frac{\left(\sqrt{a}+1\right)^2-\left(\sqrt{a}-1\right)^2}{a-1}+4\sqrt{a}\right)\cdot\frac{a-1}{\sqrt{a}}\)

\(=\left(\frac{a+1+2\sqrt{a}-a-1+2\sqrt{a}}{a-1}+4\sqrt{a}\right)\cdot\frac{a-1}{\sqrt{a}}\)

\(=\left(\frac{4\sqrt{a}}{a-1}+4\sqrt{a}\right)\cdot\frac{a-1}{\sqrt{a}}=4\sqrt{a}\left(\frac{1}{a-1}+1\right)\cdot\frac{a-1}{\sqrt{a}}=4\cdot\left(a-1\right)\left(\frac{1}{a-1}+1\right)\)

\(=4\cdot\left(a-1\right)\)

vừa tham khảo cách làm vừa check lại hộ tớ với nhé :33 

Bình luận (0)
 Khách vãng lai đã xóa
NL
1 tháng 11 2020 lúc 20:35
\(Với\)\(a>0\);\(a\ne1\)ta có:

\(M=(\frac{2+\sqrt{a}}{a+2\sqrt{a}+1}-\frac{\sqrt{a}-2}{a-1}).(\frac{a\sqrt{a}+a-\sqrt{a}-1}{\sqrt{a}})\)

\(=[\frac{\sqrt{a}+2}{(\sqrt{a}+1)^2}-\frac{\sqrt{a}-2}{(\sqrt{a}+1)(\sqrt{a}-1)}].\frac{(a\sqrt{a}-\sqrt{a})+(\sqrt{a}-1)}{\sqrt{a}}\)

\(=[\frac{(\sqrt{a}-2).(\sqrt{a}-1)}{(\sqrt{a}+1)^2.(\sqrt{a}-1)}-\frac{(\sqrt{a}-2).(\sqrt{a}+1)}{(\sqrt{a}+1)^2.(\sqrt{a}-1)}].\frac{\sqrt{a}(a-1)+(a-1)}{\sqrt{a}}\)

\(=[\frac{a+\sqrt{a}-2}{(\sqrt{a}+1)(a-1)}-\frac{a-\sqrt{a}-2}{(\sqrt{a}+1)(a-1)}].\frac{(a-1).(\sqrt{a}+1)}{\sqrt{a}}\)

\(=\frac{a+\sqrt{a}-2-a+\sqrt{a}+2}{(a-1).(\sqrt{a}+1)}.\frac{(a-1)(\sqrt{a}+1)}{\sqrt{a}}\)

\(=\frac{2\sqrt{a}}{(a-1)(\sqrt{a}+1)}.\frac{(a-1)(\sqrt{a}+1)}{\sqrt{a}}\)

\(=2\)

Vậy \(M=2\)

\(Với\)\(a>0;a\ne1:\)

\(N=(\frac{\sqrt{a}+1}{\sqrt{a}-1}-\frac{\sqrt{a}-1}{\sqrt{a}+1}+4\sqrt{a}).(\sqrt{a}-\frac{1}{\sqrt{a}})\)

\(=[\frac{(\sqrt{a}+1).(\sqrt{a}+1)}{\left(\sqrt{a}-1\right).(\sqrt{a}+1)}-\frac{(\sqrt{a}-1).(\sqrt{a}-1)}{(\sqrt{a}-1).(\sqrt{a}+1)}+\frac{4\sqrt{a}(a-1)}{(\sqrt{a}-1).(\sqrt{a}+1)}].\frac{a-1}{\sqrt{a}}\)

\(=\frac{(\sqrt{a}+1)^2-(\sqrt{a}-1)^2+(4a\sqrt{a}-4\sqrt{a})}{(\sqrt{a}-1).(\sqrt{a}+1)}.\frac{a-1}{\sqrt{a}}\)

\(=\frac{a+2\sqrt{a}+1-a+2\sqrt{a}-1+4a\sqrt{a}-4\sqrt{a}}{a-1}.\frac{a-1}{\sqrt{a}}\)

\(=\frac{4a\sqrt{a}}{a-1}.\frac{a-1}{\sqrt{a}}\)\(=4a\)

Vậy \(N=4a\)

Bình luận (0)
 Khách vãng lai đã xóa
DT
Xem chi tiết
MW
6 tháng 7 2017 lúc 17:09

Bạn ơi, mk làm câu a), các câu sau bạn tự làm dc k ???

Bình luận (0)
MW
6 tháng 7 2017 lúc 17:10

các câu sau giải dựa vào câu a) nhé ^^

Bình luận (0)
DT
6 tháng 7 2017 lúc 17:22

ok Milky Way

Bình luận (0)
IH
Xem chi tiết
N1
Xem chi tiết
TT
21 tháng 9 2015 lúc 21:24

ĐK a < 0 hoặc a = 1 

\(=\sqrt{1-a}+\sqrt{a\left(a-1\right)}-\sqrt{\frac{a^2\left(a-1\right)}{a}}=\sqrt{1-a}+\sqrt{a\left(a-1\right)}-\sqrt{a\left(a-1\right)}=\sqrt{1-a}\)

Bình luận (0)
TT
21 tháng 9 2015 lúc 22:39

Đk \(1-a\ge0;a\left(1-a\right)\ge0;\frac{a}{a-1}\ge0\)

=> \(a\le1;a\ge1ora\le0;a\ge1ora

Bình luận (0)
H24
Xem chi tiết
LM
29 tháng 9 2019 lúc 20:33

đkxđ a>0 a khác 1

Bình luận (0)
H24
29 tháng 9 2019 lúc 20:37

câu trả lời đâu

Bình luận (0)
TD
Xem chi tiết
MT
6 tháng 9 2015 lúc 6:49

\(B=\left(\frac{1}{1-\sqrt{a}}-\frac{1}{1+\sqrt{a}}\right)\left(\frac{1}{\sqrt{a}}+1\right)\)

\(=\left(\frac{1+\sqrt{a}}{1-a}-\frac{1-\sqrt{a}}{1-a}\right)\left(\frac{\sqrt{a}}{a}+\frac{a}{a}\right)\)

\(=\frac{1+\sqrt{a}-1+\sqrt{a}}{1-a}.\frac{\sqrt{a}+a}{a}\)

\(=\frac{2\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}.\frac{\sqrt{a}.\left(1+\sqrt{a}\right)}{a}\)

\(=\frac{2}{1-\sqrt{a}}\)

Bình luận (0)
NY
Xem chi tiết
H24
Xem chi tiết
MN
29 tháng 3 2020 lúc 12:41

\(ĐKXĐ:a\ge0\)

\(A=\left(\frac{2\sqrt{a}}{a\sqrt{a}+a+\sqrt{a}+1}+\frac{1}{\sqrt{a}+1}\right):\left(1+\frac{\sqrt{a}}{a+1}\right)\)

\(\Leftrightarrow A=\left(\frac{2\sqrt{a}}{\left(a+1\right)\left(\sqrt{a}+1\right)}+\frac{1}{\sqrt{a}+1}\right):\frac{a+\sqrt{a}+1}{a+1}\)

\(\Leftrightarrow A=\frac{2\sqrt{a}+a+1}{\left(a+1\right)\left(\sqrt{a}+1\right)}\cdot\frac{a+1}{a+\sqrt{a}+1}\)

\(\Leftrightarrow A=\frac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(a+\sqrt{a}+1\right)}\)

\(\Leftrightarrow A=\frac{\sqrt{a}+1}{a+\sqrt{a}+1}\)

Bình luận (0)
 Khách vãng lai đã xóa