a/ Chứng minh rằng: 316- 1 chia hết cho cả 2 và 5
b/ dùng 3 chữ số; 1,5,0 để viết các số có 3 chữ số chia hết cho cả 2 và 5
1-Cho 1 số tự nhiên a và 5a có tổng các chữ số như nhau.chứng minh rằng a chia hết cho 9
2- cho a+5b chia hết cho 7. Chứng minh rằng 10a+b chia hết cho 7. Điều ngược lại có đúng hay không?
3-chứng minh rằng ( 1005a+ 2100b) chia hết cho 15 với mọi a,b thuộc N
2-
Ta có:
a+5b chia hết cho 7
=>10.(a+5b) chia hết cho 7
=>10a+50b chia hết cho 7
Nếu 10a+b chia hết cho 7 thì 10a+50b-(10a+b) bchia hết cho 7
=>49b chia hết cho 7 (đúng)
Vì vậy 10a+b chia hết cho 7
CM điều ngược lại đúng
Ta có:
10a+b chia hết cho 7
=>5.(10a+b) chia hết cho 7
=>50a+5b chia hết cho 7
Nếu a+5b chia hết cho 7 thì (50a+5b)-(a+5b) chia hết cho 7
=>49a chia hết cho 7 (đúng)
Vậy điều ngược lại đúng
Vì a và 5a có tổng các chữ số như nhau
=> a và 5a có cùng số dư khi chia cho 9
=> 5a - a chia hết cho 9
=> 4a chia hết cho 9
Mà ƯCLN(4,9) = 1
=> a chia hết cho 9 (đpcm)
A = 119 +118 +117 +... +11+1. Chứng minh rằng A chia hết cho 5
B = 2 + 22 + 23 +... + 260 . Chứng minh rằng B chia hết cho 7 và 15
C = 3 + 33 + 35 +... + 31991 . Chứng minh rằng C chia hết cho 13 và 41
mình cần gấp giúp mình với
giúp mình với mình chuẩn bị phải nộp bài rồi T~T
\(B=2+2^2+2^3+...+2^{60}\)
\(=2\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(=7\cdot\left(2+...+2^{58}\right)⋮7\)
Bài 1 : Cho a thuộc N*. Chứng minh rằng ( 4^a +1 ) . (4^a +2) chia hết cho 3
Bài 2 : Tìm các số tự nhiên x , biết 4^x +11 = 6y
Bài 3: Cho biết a và 5a có tổng các chữ số bằng nhau . Chứng minh rằng a chia hết cho 9
Bài 4 : Tìm tất cả các số tự nhiên x , y sao cho x+1 chia hết cho y và y+1 chia hết cho x
1. Với mọi a,b,n thuộc N thì B = ( 10n - 1 ) .a + (11....1 -n).b chia hết cho 9 ( có n chữ số 1 )
2. Chứng minh rằng:
a) 10n- 36n -1 chia hết cho 27 với n thuộc N; n nhỏ hơn hoặc bằng 2
b) số 11...1 chia hết cho 27 ( có 27 chữ số 1 )
3. cho a - 5b chia hết cho 17 ( a,b thuộc N ). Chứng minh rằng 10a+b chia hết cho 17
4. Chứng minh rằng : n(2n+1 )( 7n +1 ) chia hết cho 6 với n thuộc N
5. Cho hai số tự nhiên abc và deg đều chia 11 dư 5 . Chứng minh rằng số abcdeg chia hết cho 11
6. Cho biết số abc chia hết cho 7. Chứng minh rằng: 2a +3b +c chia hết cho 7
1)Chứng minh rằng:
a) 102002 + 8 chia hết cho cả 9 và 2.
b) 102004 + 14 chia hết cho cả 3 và 2.
2)a) Chứng minh công thức số lượng các ước của một số:
Nếu m = ax.by.cz...thì số lượng các ước của m là: (x + 1)(y + 1)(z + 1)...
b) Ap dụng: Tìm số lượng các ước của 312; 16 920.
3)Cho số xyz chia hết cho 37. Chứng minh rằng số yzx chia hết cho 37.
1.Chứng minh rằng:
a) Nếu 2a+3b chia hết cho 11 thì 5b+2a chia hết cho 11 và ngược lại.
b) n là số nguyên tố lớn hơn 3 thì n2 là số nguyên tố hay hợp số?
2. Tìm chữ số x và y để: x185y chia hết cho 12
3. Tìm tất cả các số nguyên x và y, biết: \(\frac{1}{2}< \frac{x}{5}< \frac{y}{4}< \frac{3}{5}\)
1.Chứng minh rằng:
a) Nếu 2a+3b chia hết cho 11 thì 5b+2a chia hết cho 11 và ngược lại.
b) n là số nguyên tố lớn hơn 3 thì n2 là số nguyên tố hay hợp số?
2. Tìm chữ số x và y để: x185y chia hết cho 12
3. Tìm tất cả các số nguyên x và y, biết: \(\frac{1}{2}< \frac{x}{5}< \frac{y}{4}< \frac{3}{5}\)
1.Chứng minh với mọi số nguyên n thì:
a) n(2n-3)-2n(n+1) luôn chia hết cho 5
b)(2n-3).(2n+3)-4n(n-9) luôn chia hết cho 9
2.Cho a và b là 2 số tự nhiên biết rằng a chia 5 dư 1, b chia 5 dư 4, cmr a.b chia 5 dư 4
Bài 1:
b) Ta có: \(\left(2n-3\right)\left(2n+3\right)-4n\left(n-9\right)\)
\(=4n^2-9-4n^2+36n\)
\(=36n-9⋮9\)
Bài 1: Cho 8 số tự nhiên có 3 chữ số. Chứng minh rằng trong 8 số đó, tồn tại 2 số mà khi viết liên tiếp nhau thì tạo thành 1 số có 6 chữ số chia hết cho 7
Bài 2: Cho 3 chữ số khác nhau và khác 0. Lập tất cả các số tự nhiên có 3 chữ số gồm cả 3 chứ số ấy. Chứng minh rằng tổng của chúng chia hết cho 6 và 37
Bài 3: Một học sinh viết các số tự nhiên từ 1 đến abc(có gạch trên đầu). Bạn đó phải viết tất cả m chữ số. Biết rằng m chia hết cho abc, tìm abc
Mọi người chi tiết hộ nhé, tks
Chia 1 số tự nhiên (trong 8 số đó) cho 7 ta thu được 1 số dư
⇒ Khi chia cả 8 số đó cho 7 ta sẽ thu được 8 số dư
Mà một phép chia cho 7 có thể dư 0; 1; 2; 3; 4; 5; 6
⇒ Có ít nhất 2 trong 8 số chia cho 7 thì cùng số dư
⇒ Hiệu 2 số đó chia hết cho 7
Gọi 2 số đó là và (0 ≤ a, b , c, d, e, f ≤ 9; a, d khác 0)
Không mất tính tổng quát, giả sử >
Ta có:
= 1000 +
⇔ = 1001 – +
⇔ = 7 . 143 .