Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
CN
Xem chi tiết
BT
Xem chi tiết
CA
Xem chi tiết
H24
Xem chi tiết
LA
30 tháng 9 2018 lúc 9:17

\(\left(x-a\right)^n=\left(a-1\right)^2\)

Nếu n lẻ thì \(x-a=\sqrt[n]{\left(a-1\right)^2}\) do đó \(x=a+\sqrt[n]{\left(a-1\right)^2}\)

Nếu n chẵn , \(n=2k\left(k\inℕ^∗\right)\) thì \(x-a=\pm\sqrt[2k]{\left(a-1\right)^2}\) vì \(\left(a-1\right)^1\ge0\) có 2 căn bậc hai đối nhau

Do đó: \(x=a\pm\sqrt[k]{|a-1|}\) 

Nếu \(a\ge1\) thì \(x=a\pm\sqrt[k]{a-1}\)

Nếu a < 1 thì \(x=a\pm\sqrt[k]{1-a}\)

=.= hok tốt!!

Bình luận (0)
PB
Xem chi tiết
CT
30 tháng 9 2019 lúc 3:55

Điều kiện của bất phương trình là x ≥ 0

    Nếu m ≤ 1 thì m - 1 ≤ 0, bất phương trình đã cho nghiệm đúng với mọi x ≥ 0

    Nếu m > 1 thì m – 1 > 0, bất phương trình đã cho tương đương với √x ≤ 0 ⇔ x = 0

    Vậy: Nếu m ≤ 1 thì tập nghiệm của bất phương trình là [0; +∞)

     Nếu m > 1 thì tập nghiệm của bất phương trình là {0}

Bình luận (0)
LQ
Xem chi tiết
FA
Xem chi tiết
TT
28 tháng 1 2022 lúc 15:58

\(m\left(x-m\right)\le4x+5.\left(1\right)\\ \Leftrightarrow mx-m^2-4x-5\le0.\\ \Leftrightarrow\left(m-4\right)x\le5+m^2.\circledast\)

+) Nếu \(m-4>0.\Leftrightarrow m>4.\)

Khi \(\circledast\) có nghiệm: \(x\le\dfrac{5+m^2}{m-4}.\)

+) Nếu \(m-4< 0.\Leftrightarrow m< 4.\)

Khi \(\circledast\) có nghiệm: \(x\ge\dfrac{5+m^2}{m-4}.\)

+) Nếu \(m-4=0.\) \(\Leftrightarrow m=4.\)

Thay vào \(\circledast\) ta có: 

\(0x\le5+4^2.\Leftrightarrow0x\le21\) (vô lý).

Kết luận: 

Với \(m>4\) thì (1) có tập nghiệm \(S=\) \((-\infty;\dfrac{5+m^2}{m-4}].\)

Với \(m< 4\) thì (1) có tập nghiệm \(S=\) \([\dfrac{5+m^2}{m-4};+\infty).\)

Với \(m=4\) thì (1) có tập nghiệm \(S=\) \(\phi.\)

 
Bình luận (0)
PT
Xem chi tiết
NT
6 tháng 12 2021 lúc 22:34

b: Để phương trình vô nghiệm thì x-2=0

hay x=2

Để phương trình có nghiệm thì x-2<>0

hay x<>2

Bình luận (0)
VN
Xem chi tiết