Những câu hỏi liên quan
HN
Xem chi tiết
HT
23 tháng 7 2023 lúc 16:25

A=(2ab-a^2-b^2+c^2).(2ab+a^2+b^2-c^2)

A=(c^2-(a-b)^2).((a+b)^2-c^2)

A=(c-a+b)(c+a-b)(a+b-c)(a+b+c)

Do c+b-a>0

c+a-b>0

a+b-c>0

a+b+c>0

=>A>0

@Hà Nhung Huyền Trang

Bình luận (0)
NN
Xem chi tiết
H24
6 tháng 9 2020 lúc 16:34

Bài này không đúng nhé. Với a = b = c = 1 thì bất đẳng thức sai. Tuy nhiên bài này đúng theo chiều ngược lại.

Bình luận (0)
 Khách vãng lai đã xóa
PN
7 tháng 9 2020 lúc 20:18

Ta sẽ chứng minh bất đẳng thức phụ sau đây \(x^2+y^2+z^2\ge xy+yz+zx\)

\(< =>2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\)

\(< =>2x^2+2y^2+2z^2-2xy-2yz-2zx\ge0\)

\(< =>\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)*đúng*

Đặt \(\left\{2a+2b-c;2b+2c-a;2c+2a-b\right\}\rightarrow\left\{x;y;z\right\}\)

Vì a,b,c là ba cạnh của 1 tam giác nên x,y,z dương 

Ta có : \(x^2+y^2+z^2=9\left(a^2+b^2+c^2\right)\)

\(x+y=c+a+4b\)\(y+z=a+b+4c\)\(z+x=b+c+4a\)

Bất đẳng thức cần chứng minh quy về : \(\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{x+y}\ge\frac{x^2+y^2+z^2}{2}\)

Áp dụng bất đẳng thức AM-GM ta có : 

\(\frac{x^3}{y+z}+\frac{x\left(y+z\right)}{4}\ge2\sqrt{\frac{x^3.x\left(y+z\right)}{\left(y+z\right)4}}=2\sqrt{\frac{x^4}{4}}=2\frac{x^2}{2}=x^2\)

\(\frac{y^3}{x+z}+\frac{y\left(x+z\right)}{4}\ge2\sqrt{\frac{y^3.y\left(x+z\right)}{\left(x+z\right)4}}=2\sqrt{\frac{y^4}{4}}=2\frac{y^2}{2}=y^2\)

\(\frac{z^3}{x+y}+\frac{z\left(x+y\right)}{4}\ge2\sqrt{\frac{z^3.z\left(x+y\right)}{\left(x+y\right)4}}=2\sqrt{\frac{z^4}{4}}=2\frac{z^2}{2}=z^2\)

Cộng theo vế các bất đẳng thức cùng chiều ta được :

\(\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{x+y}+\frac{x\left(y+z\right)}{4}+\frac{y\left(x+z\right)}{4}+\frac{z\left(x+y\right)}{4}\ge x^2+y^2+z^2\)

\(< =>\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{x+y}+\frac{xy+yz+zx+xy+yz+zx}{4}\ge x^2+y^2+z^2\)

\(< =>\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{x+y}+\frac{xy+yz+zx}{2}\ge x^2+y^2+z^2\)

\(< =>\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{x+y}\ge x^2+y^2+z^2-\frac{xy+yz+zx}{2}\)

Sử dụng bất đẳng thức phụ \(x^2+y^2+z^2\ge xy+yz+zx\)khi đó ta được :

\(\frac{x^3}{y+z}+\frac{y^3}{x+z}+\frac{z^3}{y+x}\ge x^2+y^2+z^2-\frac{x^2+y^2+z^2}{2}\)

\(< =>\frac{x^3}{y+z}+\frac{y^3}{z+x}+\frac{z^3}{x+y}\ge\frac{x^2+y^2+z^2}{2}\left(đpcm\right)\)

Đẳng thức xảy ra khi và chỉ khi \(x=y=z< =>a=b=c\)

Vậy ta có điều phải chứng minh

Bình luận (0)
 Khách vãng lai đã xóa
HG
Xem chi tiết
NT
Xem chi tiết
HP
Xem chi tiết
VN
17 tháng 6 2016 lúc 10:06

undefined

Bình luận (3)
DT
17 tháng 6 2016 lúc 10:08

VT=2a2b2+2a2c2+2b2c2-a4-b4-c4

=a2b2+a2c2+b2c2+a2.(b2-a2)+b2.(c2-b2)+c2.(a2-c2)

=a2b2+a2c2+b2c2+a2.(b+a)(b-a)+b2.(c+b)(c-b)+c2.(a+c)(a-c)

Ta lại có : a+b>c=>a-c>-b

                 b+c>a=>b-a>-c

                 c+a>b=>c-b>-a

(BĐT tam giác)

=>VT>a2b2+a2c2+b2c2+a2.c.(-c)+b2.a.(-a)+c2.b.(-b)

=0

=>VT>0 =>dpcm

Bình luận (3)
NT
16 tháng 4 2017 lúc 21:13

undefined

Bình luận (0)
NH
Xem chi tiết
NT
30 tháng 10 2023 lúc 20:54

a: \(A=\left(b^2+c^2-a^2\right)^2-4b^2c^2\)

\(=\left(b^2+c^2-a^2\right)^2-\left(2bc\right)^2\)

\(=\left(b^2-2bc+c^2-a^2\right)\left(b^2+2bc+c^2-a^2\right)\)

\(=\left[\left(b+c\right)^2-a^2\right]\left[\left(b-c\right)^2-a^2\right]\)

\(=\left(b+c-a\right)\left(b+c+a\right)\left(b-c-a\right)\left(b-c+a\right)\)

b: a,b,c là độ dài 3 cạnh của 1 tam giác

=>b+c>a và a+b>c và a+c>b

=>b+c-a>0 và a+b-c>0 và a+c-b>0

=>b+c-a>0 và b-(c+a)<0 và a+b-c>0

=>(b+c-a)[b-(c+a)][a+b-c](a+b+c)<0

=>A<0

Bình luận (0)
NH
Xem chi tiết
NT
30 tháng 10 2023 lúc 20:55

loading...

Bình luận (0)
MN
Xem chi tiết
GP
Xem chi tiết
DH
18 tháng 6 2021 lúc 16:12

\(A=4a^2b^2-\left(a^2+b^2-c^2\right)^2=\left(2ab-a^2-b^2+c^2\right)\left(2ab+a^2+b^2-c^2\right)\)

\(=\left[c^2-\left(a-b\right)^2\right]\left[c^2+\left(a+b\right)^2\right]\)

\(=\left(c-a+b\right)\left(c-b+a\right)\left[c^2+\left(a+b\right)^2\right]>0\)

(vì theo bất đẳng thức tam giác thì \(b+c-a>0,a+c-b>0\))

Bình luận (0)
 Khách vãng lai đã xóa