Những câu hỏi liên quan
KP
Xem chi tiết
DD
Xem chi tiết
NK
14 tháng 10 2018 lúc 15:54

a, A = 3x2 + 18x + 33 => 3A = 9x2 + 54x + 99 = (3x)2 + 2.3x.9 + 81 + 18 = (3x + 9)2 + 18

Vì (3x + 9)2 > hoặc = 0 với mọi x => (3x + 9)2 + 18 luôn > 0 => 3A > o với mọi x hây > 0 với mọi x.

b, Ta có 3A = (3x + 9)2 + 18.

Vì (3x + 9)2 > hoặc = 0 với mọi x => (3x + 9)2 + 18 > hoặc = 18

Do đó 3A > hoặc = 18 => A > hoặc = 6.

Dấu = xảy ra <=> (3x + 9)2 = 0

<=> 3(x + 3) = 0

<=> x + 3 = 0

<=> x = -3

Vậy GTNN của A = 6 khi x = -3

Bình luận (0)
MC
Xem chi tiết
NT
27 tháng 1 2023 lúc 15:32

Ta thay x bằng số -4. Khi đó -4+4=0, mà 0 mũ 2020 thì vẫn bằng 0. 0+17=17. Đáp án: 17

Bình luận (0)
ND
Xem chi tiết
H24
4 tháng 1 2022 lúc 16:08

\(A=x^2-3x+2\\ \Rightarrow A=\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{1}{4}\\ \Rightarrow A=\left(x-\dfrac{3}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{3}{2}\)

Vậy \(A_{min}=-\dfrac{3}{4}\Leftrightarrow x=\dfrac{3}{2}\)

Bình luận (0)
TK
Xem chi tiết
PB
Xem chi tiết
CT
2 tháng 7 2019 lúc 7:00

Điều kiện x ≠ 2 và x  ≠  0

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vì x - 1 2 ≥ 0 nên x - 1 2 + 2 ≥ 2 với mọi giá trị của x.

Khi đó giá trị nhỏ nhất của biểu thức bằng 2 khi x = 1.

Vậy biểu thức đã cho có giá trị nhỏ nhất bằng 2 tại x = 1.

Bình luận (0)
LB
Xem chi tiết
ML
2 tháng 12 2017 lúc 22:12

x2-3.(x-1)

(x-1)2

=>x2-3

x-1

Bình luận (0)
QV
Xem chi tiết
NT
20 tháng 2 2022 lúc 19:53

Bài 8:

a: Khi a=1 thì phương trình sẽ là \(\left(1-4\right)x-12x+7=0\)

=>-3x-12x+7=0

=>-15x+7=0

=>-15x=-7

hay x=7/15

b: Thay x=1 vào pt, ta được:

\(a^2-4-12+7=0\)

\(\Leftrightarrow\left(a-3\right)\left(a+3\right)=0\)

hay \(a\in\left\{3;-3\right\}\)

c: Pt suy ra là \(\left(a^2-16\right)x+7=0\)

Để phương trình đã cho luôn có một nghiệm duy nhất thì (a-4)(a+4)<>0

hay \(a\notin\left\{4;-4\right\}\)

Bình luận (0)
PD
Xem chi tiết
DT
19 tháng 7 2016 lúc 16:40

a)Áp dụng BĐT bunhiacoxki ta có: \(\left(a^2+b^2\right)\left(1^2+1^2\right)\ge\left(a.1+b.1\right)^2=\left(a+b\right)^2=3^2=9\)

=>\(2\left(a^2+b^2\right)\ge9\Leftrightarrow a^2+b^2\ge\frac{9}{2}\)

Dấu "=" xảy ra khi: a=b

Vậy GTNN của N là 9/2 tại a=b

b)Ta có: \(a^2+b^2\ge\frac{9}{2}\) (câu a)

<=>(a+b)2-2ab\(\ge\frac{9}{2}\)

<=>\(9-2ab\ge\frac{9}{2}\)

<=>\(2ab\le\frac{9}{2}\)

<=>\(ab\ge\frac{9}{4}\)

<=>\(ab+2\le\frac{17}{4}\)

Dấu "=" xảy ra khi a=b

Vậy GTLN của P là 17/4 tại a=b

Bình luận (0)