Tìm x,biết x3-25x=0
Tìm x biết:
a. x3 – 25x = 0 b. 3x(x- 2) – x + 2 = 0
c. x2 – 4x - 5 = 0 d.x3 – x2 + 3x – 3 = 0
e. x3 + 27 + ( x + 3)( x – 9) = 0
a: \(\Leftrightarrow x\left(x-5\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\)
Tìm x:
a)(3x+5).(7-2x)+6x.(x+4)=0
b)x3-25x=0
a) \(\left(3x+5\right)\left(7-2x\right)+6x\left(x+4\right)=0\)
\(\Leftrightarrow21x-6x^2+35-10x+6x^2+24x=0\)
\(\Leftrightarrow35x=-35\Leftrightarrow x=-1\)
b) \(x^3-25x=0\)
\(\Leftrightarrow x\left(x^2-25\right)=0\)
\(\Leftrightarrow x\left(x-5\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\)
a: Ta có: \(\left(3x+5\right)\left(7-2x\right)+6x\left(x+4\right)=0\)
\(\Leftrightarrow21x-6x^2+35-10x+6x^2+24x=0\)
\(\Leftrightarrow x=1\)
b: Ta có: \(x^3-25x=0\)
\(\Leftrightarrow x\left(x-5\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\)
a. (3x + 5)(7 - 2x) + 6x(x + 4) = 0
<=> 21x - 6x2 + 35 - 10x + 6x2 + 24x = 0
<=> -6x2 + 6x2 + 21x - 10x + 24x = -35
<=> 35x = -35
<=> x = \(\dfrac{-35}{35}=-1\)
b. x3 - 25x = 0
<=> x(x2 - 52)
<=> x(x + 5)(x - 5) = 0
<=> \(\left[{}\begin{matrix}x=0\\x+5=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\\x=5\end{matrix}\right.\)
b) x3 – 5x2 – x + 5 = 0.
c) x3 – x2 – 25x + 25 = 0
d) 4x3 – 8x2 – 9x + 18 = 0.
b: \(\Leftrightarrow\left(x-5\right)\left(x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=1\\x=-1\end{matrix}\right.\)
c: \(\Leftrightarrow\left(x-1\right)\left(x-5\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=5\\x=-5\end{matrix}\right.\)
tìm x biết 0 ,25x^3+x^2+x=0
Ta có:
\(0.25x^3+x^2+x=0\)
\(\Leftrightarrow x^3+4x^2+4x=0\)
\(\Leftrightarrow x\left(x^2+4x+4\right)=0\)
\(\Leftrightarrow x\left(x+2\right)^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}\)
\(0,25x^3+x^2+x=0\)
\(x\left(0,25x^2+x+1\right)=0\)
\(x\left[\left(0,5x\right)^2+2\cdot0,5x\cdot1+1^2\right]=0\)
\(x\left(0,5x+1\right)^2=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\0,5x+1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}\)
Vậy.....
c) x3 – x2 – 25x + 25 = 0
Lời giải:
$x^3-x^2-25x+25=0$
$\Leftrightarrow x^2(x-1)-25(x-1)=0$
$\Leftrightarrow (x-1)(x^2-25)=0$
$\Leftrightarrow (x-1)(x-5)(x+5)=0$
$\Leftrightarrow x-1=0$ hoặc $x-5=0$ hoặc $x+5=0$
$\Leftrightarrow x=1$ hoặc $x=\pm 5$
Tìm x, biết 25 x - 2 . 10 x + 4 x = 0
A. x = 1 B. x = -1
C. x = 2 D. x = 0
Tìm a sao cho biểu thức A chia hết cho B(tìm a sao cho A:B ∈ Z)
1)A=x3-3x2-ax+3;B=x-1
2)A=3x3-16x2+25x+a;B=x2-4x+3
3)A=x4-x3+6x2-x+a;B=x2-x+5
\(1,A⋮B\Leftrightarrow x^3-3x^2-ax+3=\left(x-1\right)\cdot a\left(x\right)\)
Thay \(x=1\)
\(\Leftrightarrow1-3-a+3=0\\ \Leftrightarrow a=1\)
\(2,A⋮B\Leftrightarrow3x^3-16x^2+25x+a=\left(x^2-4x+3\right)\cdot b\left(x\right)\\ \Leftrightarrow3x^3-16x^2+25x+a=\left(x-3\right)\left(x-1\right)\cdot b\left(x\right)\)
Thay \(x=1\)
\(\Leftrightarrow3-16+25+a=0\\ \Leftrightarrow a=-12\)
Thay \(x=3\)
\(\Leftrightarrow3\cdot27-16\cdot9+25\cdot3+a=0\\ \Leftrightarrow81-144+75+a=0\\ \Leftrightarrow12+a=0\Leftrightarrow a=-12\)
Vậy \(a=-12\)
Tìm x, biết 25 x - 2. 10 x + 4 x = 0
A. x = 1 B. x = -1
C. x = 2 D. x = 0
Tìm số tự nhiên x
a) 2x = 6
b) 62x-1 = 216;
c) x3 = 25x;
d) (x +1)2 = 2.(x+1)
giúp mk với nhé
b: Ta có: \(6^{2x-1}=216\)
\(\Leftrightarrow2x-1=3\)
hay x=2
c: Ta có: \(x^3=25x\)
\(\Leftrightarrow x\left(x-5\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\)