Những câu hỏi liên quan
DD
Xem chi tiết
NT
4 tháng 9 2021 lúc 14:16

a: Ta có: \(-x^2+4x-5\)

\(=-\left(x^2-4x+5\right)\)

\(=-\left(x^2-4x+4+1\right)\)

\(=-\left(x-2\right)^2-1< 0\forall x\)

Bình luận (1)
NT
4 tháng 9 2021 lúc 15:04

b: Ta có: \(x^4\ge0\forall x\)

\(3x^2\ge0\forall x\)

Do đó: \(x^4+3x^2\ge0\forall x\)

\(\Leftrightarrow x^4+3x^2+3>0\forall x\)

c: Ta có: \(\left(x^2+2x+3\right)=\left(x+1\right)^2+2>0\forall x\)

\(x^2+2x+4=\left(x+1\right)^2+3>0\forall x\)

Do đó: \(\left(x^2+2x+3\right)\left(x^2+2x+4\right)>0\forall x\)

\(\Leftrightarrow\left(x^2+2x+3\right)\left(x^2+2x+4\right)+3>0\forall x\)

Bình luận (0)
DD
Xem chi tiết
NT
4 tháng 9 2021 lúc 15:03

b: Ta có: \(x^4\ge0\forall x\)

\(3x^2\ge0\forall x\)

Do đó: \(x^4+3x^2\ge0\forall x\)

\(\Leftrightarrow x^4+3x^2+3>0\forall x\)

c: Ta có: \(\left(x^2+2x+3\right)=\left(x+1\right)^2+2>0\forall x\)

\(x^2+2x+4=\left(x+1\right)^2+3>0\forall x\)

Do đó: \(\left(x^2+2x+3\right)\left(x^2+2x+4\right)>0\forall x\)

\(\Leftrightarrow\left(x^2+2x+3\right)\left(x^2+2x+4\right)+3>0\forall x\)

Bình luận (0)
LL
Xem chi tiết
H24
7 tháng 1 2023 lúc 20:44

\(2x-3=2\left(x-3\right)\\ \Leftrightarrow2x-3=2x-6\\ \Leftrightarrow-3=-6\left(voli\right)\)

\(\Rightarrow\) phương trình vô nghiệm

\(x^2-4x+6=0 \)

Ta có

\(x^2-4x+6=x^2-2.2.x+2^2+2=\left(x-2\right)^2+2\ge2\forall x\)

\(=>x^2-4x+6>0\)

\(\Rightarrow\) phương trình vô no 

Bình luận (0)
NN
7 tháng 1 2023 lúc 20:43

\(2x-1=2\left(x-3\right)\\ < =>2x-1=2x-6\\ < =>2x-2x=-6+1\\ < =>0x=-5\left(voli\right)\)

\(x^2-4x+6=0\\ < =>x^2-4x+4+2=0\\ < =>\left(x-2\right)^2+2=0\left(voli\right)\)

Bình luận (0)
H24
Xem chi tiết
KS
16 tháng 1 2019 lúc 21:36

Sai đề kìa

Áp dụng BĐT AM-GM ta có:

\(\frac{1}{x}+\frac{1}{y}\ge\frac{2}{\sqrt{xy}}\ge\frac{2}{\frac{x+y}{2}}=\frac{4}{x+y}\)

Dấu " = " xảy ra \(\Leftrightarrow\frac{1}{x}=\frac{1}{y}\Leftrightarrow x=y\)

Bình luận (0)
ZZ
16 tháng 1 2019 lúc 21:49

haiz!chán vcl nên mới trả lời câu này

Áp dụng bất đẳng thức AM-GM,ta có:

\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

dấu "=" xảy ra khi và chỉ khi \(x=y\)

\(\Rightarrow you\)sai đề

Bình luận (0)
ZZ
16 tháng 1 2019 lúc 21:54

sorry,BĐT Cauchy-swchwarz nha.đánh lộn.

Bình luận (0)
LD
Xem chi tiết
HN
11 tháng 11 2016 lúc 22:11

Ta có : \(\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(y-z\right)^2\ge0\\\left(z-x\right)^2\ge0\end{cases}}\) \(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)

\(\Leftrightarrow2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\Leftrightarrow x^2+y^2+z^2\ge xy+yz+zx\)

\(\Leftrightarrow x^2+y^2+z^2+2\left(xy+yz+zx\right)\ge2\left(xy+yz+zx\right)+\left(xy+yz+zx\right)\)

\(\Leftrightarrow\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)

Đẳng thức xảy ra khi x = y = z 

Bình luận (0)
VN
11 tháng 11 2016 lúc 22:53

\(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)

\(\Leftrightarrow\left(x+y+z\right)^2-3\left(xy+yz+zx\right)\ge0\)

\(\Leftrightarrow x^2+y^2+z^2-xy-yz-zx\ge0\)

\(\Leftrightarrow\frac{1}{2}\left(x-y\right)^2+\frac{1}{2}\left(y-z\right)^2+\frac{1}{2}\left(z-x\right)^2\ge0\)Luôn đúng ( đpcm )

dấu "=" xẩy ra khi và chỉ khi x = y = z 

Bình luận (0)
CV
Xem chi tiết
NT
4 tháng 4 2023 lúc 20:35

loading...  do đó: phương trình luôn có 2 nghiệm phân biệt

Bình luận (1)
H24
4 tháng 4 2023 lúc 20:38

\(\Delta'=\left[-\left(m-3\right)\right]^2-\left(2m-8\right)=m^2-6m+9-2m+8=0\\ =m^2-8m+17\\ =\left(m^2-8m+16\right)+1\\ =\left(m-4\right)^2+1\\ \left(m-4\right)^2\ge0\forall x\\ =>\left(m-4\right)^2+1>1>0\forall x\)

=> phương trình có hai nghiệm phân biệt 

Bình luận (0)
MR
Xem chi tiết
NM
2 tháng 11 2021 lúc 9:54

a, Để \(P\left(x\right)⋮Q\left(x\right)\Leftrightarrow P\left(-\dfrac{1}{2}\right)=\dfrac{1}{16}-\dfrac{5}{4}-2+a=0\Leftrightarrow a=\dfrac{51}{16}\)

b, \(n^3+6n^2+8n=n\left(n^2+6n+8\right)=n\left(n+2\right)\left(n+4\right)\)

Với n chẵn thì 3 số này là 3 số chẵn lt nên chia hết cho \(2\cdot4\cdot6=48\)

Bình luận (1)
HD
5 tháng 8 2022 lúc 8:48

a, P(x):Q(x)=1/2x^3-1/4x^2-19/8x+51/16(dư a-51/16)=>Để P(x) chia hết cho Q(x) thì a-51/16 phải bằng 0 => a=51/16

b, n3 + 6n2 + 8n= n(n2 +6n +8)

                          = n(n2 + 2n + 4n + 8)

                          = n[ n(n + 2) + 4(n + 2) ]

                          = n(n + 2)(n + 4)

Vì n là số chẵn nên đặt n=2k (k thuộc Z) ta được:

                             2k(2k  + 2)(2k + 4)

                          =8k(k + 1)(k +2)

Vì k, k+1, k+2 là ba số tự nhiên liên tiếp nên có một sò chia hết cho 2 và một sồ chia hết cho 3 => k(k+1)(k+4)⋮6

                                                  => 8k(k+1)(k+4)⋮48 (đpcm)

Bình luận (0)
H24
Xem chi tiết
NT
8 tháng 9 2023 lúc 21:42

Để A là số nguyên thì \(3\sqrt{x}+8⋮\sqrt{x}+2\)

=>\(3\sqrt{x}+6+2⋮\sqrt{x}+2\)

=>\(2⋮\sqrt{x}+2\)

mà \(\sqrt{x}+2>2\forall x>0\)

nên A không thể là số nguyên

Bình luận (0)
H24
Xem chi tiết
AH
24 tháng 5 2021 lúc 1:05

Lời giải:

Ta thấy:

$\Delta=(m+3)^2-8m=m^2-2m+9=(m-1)^2+8>0$ với mọi $m\in\mathbb{R}$

Do đó pt luôn có nghiệm với mọi $m$

Với $x_1,x_2$ là 2 nghiệm của pt. Áp dụng định lý Viet:

\(\left\{\begin{matrix} x_1+x_2=\frac{m+3}{2}\\ x_1x_2=\frac{m}{2}\end{matrix}\right.\)

\(A=|x_1-x_2|=\sqrt{(x_1-x_2)^2}=\sqrt{(x_1+x_2)^2-4x_1x_2}\)

\(=\sqrt{\frac{(m+3)^2}{4}-2m}=\frac{1}{2}\sqrt{m^2-2m+9}\)

\(=\frac{1}{2}\sqrt{(m-1)^2+8}\geq \frac{1}{2}\sqrt{8}=\sqrt{2}\)

Vậy $A_{\min}=\sqrt{2}$. Giá trị này đạt tại $m=1$

Bình luận (0)