x4-4x+3>0
chứng minh Bđt trên đúng với mọi x
Chứng minh rằng
a) – x2 + 4x – 5 < 0 với mọi x
b) x4 + 3x2 + 3 > 0 với mọi x
c) (x2 + 2x + 3)(x2 + 2x + 4) + 3 > 0 với mọi x
a: Ta có: \(-x^2+4x-5\)
\(=-\left(x^2-4x+5\right)\)
\(=-\left(x^2-4x+4+1\right)\)
\(=-\left(x-2\right)^2-1< 0\forall x\)
b: Ta có: \(x^4\ge0\forall x\)
\(3x^2\ge0\forall x\)
Do đó: \(x^4+3x^2\ge0\forall x\)
\(\Leftrightarrow x^4+3x^2+3>0\forall x\)
c: Ta có: \(\left(x^2+2x+3\right)=\left(x+1\right)^2+2>0\forall x\)
\(x^2+2x+4=\left(x+1\right)^2+3>0\forall x\)
Do đó: \(\left(x^2+2x+3\right)\left(x^2+2x+4\right)>0\forall x\)
\(\Leftrightarrow\left(x^2+2x+3\right)\left(x^2+2x+4\right)+3>0\forall x\)
Chứng minh rằng
a) – x2 + 4x – 5 < 0 với mọi x
b) x4 + 3x2 + 3 > 0 với mọi x
c) (x2 + 2x + 3)(x2 + 2x + 4) + 3 > 0 với mọi x
b: Ta có: \(x^4\ge0\forall x\)
\(3x^2\ge0\forall x\)
Do đó: \(x^4+3x^2\ge0\forall x\)
\(\Leftrightarrow x^4+3x^2+3>0\forall x\)
c: Ta có: \(\left(x^2+2x+3\right)=\left(x+1\right)^2+2>0\forall x\)
\(x^2+2x+4=\left(x+1\right)^2+3>0\forall x\)
Do đó: \(\left(x^2+2x+3\right)\left(x^2+2x+4\right)>0\forall x\)
\(\Leftrightarrow\left(x^2+2x+3\right)\left(x^2+2x+4\right)+3>0\forall x\)
2x-3= 2(x-3)
x^2 -4x+6=0
chứng tỏ vô nghiệm
\(2x-3=2\left(x-3\right)\\ \Leftrightarrow2x-3=2x-6\\ \Leftrightarrow-3=-6\left(voli\right)\)
\(\Rightarrow\) phương trình vô nghiệm
\(x^2-4x+6=0 \)
Ta có
\(x^2-4x+6=x^2-2.2.x+2^2+2=\left(x-2\right)^2+2\ge2\forall x\)
\(=>x^2-4x+6>0\)
\(\Rightarrow\) phương trình vô no
\(2x-1=2\left(x-3\right)\\ < =>2x-1=2x-6\\ < =>2x-2x=-6+1\\ < =>0x=-5\left(voli\right)\)
\(x^2-4x+6=0\\ < =>x^2-4x+4+2=0\\ < =>\left(x-2\right)^2+2=0\left(voli\right)\)
Chán vcl nên đố mn câu này
CM BĐT trên đúng với mọi : x,y>0\
1/x+1/y=4/x+y
Sai đề kìa
Áp dụng BĐT AM-GM ta có:
\(\frac{1}{x}+\frac{1}{y}\ge\frac{2}{\sqrt{xy}}\ge\frac{2}{\frac{x+y}{2}}=\frac{4}{x+y}\)
Dấu " = " xảy ra \(\Leftrightarrow\frac{1}{x}=\frac{1}{y}\Leftrightarrow x=y\)
haiz!chán vcl nên mới trả lời câu này
Áp dụng bất đẳng thức AM-GM,ta có:
\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
dấu "=" xảy ra khi và chỉ khi \(x=y\)
\(\Rightarrow you\)sai đề
sorry,BĐT Cauchy-swchwarz nha.đánh lộn.
chứng minh bđt (x+y+z)2>=3(xy+yz+xz) với mọi số x, y, z
Ta có : \(\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(y-z\right)^2\ge0\\\left(z-x\right)^2\ge0\end{cases}}\) \(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)
\(\Leftrightarrow2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\Leftrightarrow x^2+y^2+z^2\ge xy+yz+zx\)
\(\Leftrightarrow x^2+y^2+z^2+2\left(xy+yz+zx\right)\ge2\left(xy+yz+zx\right)+\left(xy+yz+zx\right)\)
\(\Leftrightarrow\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)
Đẳng thức xảy ra khi x = y = z
\(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)
\(\Leftrightarrow\left(x+y+z\right)^2-3\left(xy+yz+zx\right)\ge0\)
\(\Leftrightarrow x^2+y^2+z^2-xy-yz-zx\ge0\)
\(\Leftrightarrow\frac{1}{2}\left(x-y\right)^2+\frac{1}{2}\left(y-z\right)^2+\frac{1}{2}\left(z-x\right)^2\ge0\)Luôn đúng ( đpcm )
dấu "=" xẩy ra khi và chỉ khi x = y = z
x^2-2(m-3)x+2m-8=0
chứng minh rằng pt luôn có 2 nghiệm phân biệt với m
do đó: phương trình luôn có 2 nghiệm phân biệt
\(\Delta'=\left[-\left(m-3\right)\right]^2-\left(2m-8\right)=m^2-6m+9-2m+8=0\\ =m^2-8m+17\\ =\left(m^2-8m+16\right)+1\\ =\left(m-4\right)^2+1\\ \left(m-4\right)^2\ge0\forall x\\ =>\left(m-4\right)^2+1>1>0\forall x\)
=> phương trình có hai nghiệm phân biệt
Tìm a để đa thức P(x) chia hết cho đa thức Q(x) biết
P(x) = x4-5x2+4x+a
Q(x) = 2x+1
b. Chứng minh rằng:
n3 + 6n2 + 8n chia hết cho 48 với mọi n chẵn
a, Để \(P\left(x\right)⋮Q\left(x\right)\Leftrightarrow P\left(-\dfrac{1}{2}\right)=\dfrac{1}{16}-\dfrac{5}{4}-2+a=0\Leftrightarrow a=\dfrac{51}{16}\)
b, \(n^3+6n^2+8n=n\left(n^2+6n+8\right)=n\left(n+2\right)\left(n+4\right)\)
Với n chẵn thì 3 số này là 3 số chẵn lt nên chia hết cho \(2\cdot4\cdot6=48\)
a, P(x):Q(x)=1/2x^3-1/4x^2-19/8x+51/16(dư a-51/16)=>Để P(x) chia hết cho Q(x) thì a-51/16 phải bằng 0 => a=51/16
b, n3 + 6n2 + 8n= n(n2 +6n +8)
= n(n2 + 2n + 4n + 8)
= n[ n(n + 2) + 4(n + 2) ]
= n(n + 2)(n + 4)
Vì n là số chẵn nên đặt n=2k (k thuộc Z) ta được:
2k(2k + 2)(2k + 4)
=8k(k + 1)(k +2)
Vì k, k+1, k+2 là ba số tự nhiên liên tiếp nên có một sò chia hết cho 2 và một sồ chia hết cho 3 => k(k+1)(k+4)⋮6
=> 8k(k+1)(k+4)⋮48 (đpcm)
Cho A = \(\dfrac{3\sqrt{x}+8}{\sqrt{x}+2}\) với x>0
chứng minh rằng: A ko thể nhận giá trị nguyên
Để A là số nguyên thì \(3\sqrt{x}+8⋮\sqrt{x}+2\)
=>\(3\sqrt{x}+6+2⋮\sqrt{x}+2\)
=>\(2⋮\sqrt{x}+2\)
mà \(\sqrt{x}+2>2\forall x>0\)
nên A không thể là số nguyên
Cho PT : 2x2-(m+3)x+m=0
Chứng tỏ PT luôn có nghiệm với mọi m .Tìm GTNN của biểu thức sau : A= \(\left|x_1-x_2\right|\)
Lời giải:
Ta thấy:
$\Delta=(m+3)^2-8m=m^2-2m+9=(m-1)^2+8>0$ với mọi $m\in\mathbb{R}$
Do đó pt luôn có nghiệm với mọi $m$
Với $x_1,x_2$ là 2 nghiệm của pt. Áp dụng định lý Viet:
\(\left\{\begin{matrix} x_1+x_2=\frac{m+3}{2}\\ x_1x_2=\frac{m}{2}\end{matrix}\right.\)
\(A=|x_1-x_2|=\sqrt{(x_1-x_2)^2}=\sqrt{(x_1+x_2)^2-4x_1x_2}\)
\(=\sqrt{\frac{(m+3)^2}{4}-2m}=\frac{1}{2}\sqrt{m^2-2m+9}\)
\(=\frac{1}{2}\sqrt{(m-1)^2+8}\geq \frac{1}{2}\sqrt{8}=\sqrt{2}\)
Vậy $A_{\min}=\sqrt{2}$. Giá trị này đạt tại $m=1$