Những câu hỏi liên quan
NT
Xem chi tiết
AK
24 tháng 9 2021 lúc 19:02

4A = 4.[1.2.3 + 2.3.4 + 3.4.5 + … + (n – 1).n.(n + 1)]

4A = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 + … + (n – 1).n.(n + 1).4

4A = 1.2.3.4 + 2.3.4.(5 – 1) + 3.4.5.(6 – 2) + … + (n – 1).n.(n + 1).[(n + 2) – (n – 2)]

4A = 1.2.3.4 + 2.3.4.5 – 1.2.3.4 + 3.4.5.6 – 2.3.4.5 + … + (n – 1).n(n + 1).(n + 2) – (n – 2).(n – 1).n.(n + 1)

4A = (n – 1).n(n + 1).(n + 2)

A = (n – 1).n(n + 1).(n + 2) : 4.

Bình luận (0)
 Khách vãng lai đã xóa
NT
24 tháng 9 2021 lúc 19:03

cau a thi sao ha ban ? 

Bình luận (0)
 Khách vãng lai đã xóa
NT
24 tháng 9 2021 lúc 19:05

ok thanks ban nhe

Bình luận (0)
 Khách vãng lai đã xóa
NN
Xem chi tiết
H24
16 tháng 2 2021 lúc 19:11

https://olm.vn/hoi-dap/tim-kiem?q=t%C3%ADnh+t%E1%BB%95ng+sau+:S+=+1.2.3+2.3.4+3.4.5+...+n.(n+1).(n+2)+&id=601088

Bình luận (0)
HN
Xem chi tiết
SG
29 tháng 11 2016 lúc 23:07

Đặt A = 1.2.3 + 2.3.4 + 3.4.5 + ... + 28.29.30

4A = 1.2.3.(4-0) + 2.3.4.(5-1) + 3.4.5.(6-2) + ... + 28.29.30.(31-27)

4A = 1.2.3.4 - 0.1.2.3. + 2.3.4.5 - 1.2.3.4 + 3.4.5.6 - 2.3.4.5 + ... + 28.29.30.31 - 27.28.29.30

4A = 28.29.30.31 - 0.1.2.3

4A = 28.29.30.31

\(A=\frac{28.29.30.31}{4}=7.29.30.31=188790\)

Theo cách tính trên ta dễ dàng tính được:

1.2.3 + 2.3.4 + 3.4.5 + ... + (n - 1).n.(n + 1) = \(\frac{\left(n-1\right).n.\left(n+1\right).\left(n+2\right)}{4}\)

Bình luận (0)
NT
Xem chi tiết
TH
13 tháng 2 2018 lúc 12:16

A = \(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2007}}+\frac{1}{3^{2008}}\)

3A= \(1+\frac{1}{3}+...+\frac{1}{3^{2006}}+\frac{1}{3^{2007}}\)

3A-A= \(1-\frac{1}{3^{2008}}\)

Bình luận (0)
TH
13 tháng 2 2018 lúc 12:18

B = \(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{n-1}}+\frac{1}{3^n}\)

3B = \(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{n-2}}+\frac{1}{3^{n-1}}\)

3B - B = \(1-\frac{1}{3^n}\)

Bình luận (0)
PQ
13 tháng 2 2018 lúc 12:21

Ta có :

\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2007}}+\frac{1}{3^{2008}}\)

\(\Leftrightarrow\)\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2006}}+\frac{1}{3^{2007}}\)

\(\Leftrightarrow\)\(3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2006}}+\frac{1}{3^{2007}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2007}}+\frac{1}{3^{2008}}\right)\)

\(\Leftrightarrow\)\(2A=1-\frac{1}{3^{2008}}\)

\(\Leftrightarrow\)\(2A=\frac{3^{2008}-1}{3^{2008}}\)

\(\Leftrightarrow\)\(A=\frac{3^{2008}-1}{3^{2008}}:2\)

\(\Leftrightarrow\)\(A=\frac{3^{2008}-1}{2.3^{2008}}\)

Vậy \(A=\frac{3^{2008}-1}{2.3^{2008}}\)

Bình luận (0)
TN
Xem chi tiết
NN
28 tháng 1 2016 lúc 22:48

B=1.2.3+2.3.4+3.4.5+...+n(n+1)(n+2)

  ={1.2.3.(4-0)+2.3.4(5-1)+3.4.5.(6-2)+...+n(n+1)(n+2)[(n+3)-(n-1)]} : 4

  = [1.2.3.4+2.3.4.5+3.4.5.6+...+n(n+1)(n+2)(n+3) - 1.2.3.4 - 2.3.4.5 - 3.4.5.6 - ... - n(n+1)(n+2)(n-1)] : 4

  =\(\frac{\text{ n(n+1)(n+2)(n+3) }}{4}\)

 

Bình luận (0)
H24
28 tháng 1 2016 lúc 22:46

B = \(\frac{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}{4}\)

Bình luận (0)
TF
Xem chi tiết
H24
12 tháng 12 2018 lúc 20:58

C = 1.2.3+ 2.3.4 + 3.4.5 +...+n(n+1) ( n+2)

\(\Rightarrow4C=1.2.3\left(4-0\right)+2.3.4.\left(5-1\right)+...+n\left(n+1\right)\left(n+2\right)\left[\left(n+3\right)-\left(n-1\right)\right]\)

            \(=1.2.3.4-0.1.2.3+2.3.4.5-...+n\left(n+1\right)\left(n+2\right)\left(n+3\right)-\left(n-1\right)n\left(n+1\right)\left(n+2\right)\) \(=n\left(n+1\right)\left(n+2\right)\left(n+3\right)-0.1.2.3\)

 \(=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)

\(\Rightarrow C=\frac{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}{4}\)

Bình luận (0)
TF
12 tháng 12 2018 lúc 21:00

Thanks

Bình luận (0)
HL
Xem chi tiết
NH
7 tháng 10 2024 lúc 13:59

a; A  =1 + 2 +3+ 4+ 5+ ... +n

Xét dãy số 1; 2; 3; 4;5;...;n

Dãy số trên là dãy số cách đều với khoảng cách là: 2 - 1 = 1

Số số hạng của dãy số trên là: (n - 1) : 1 + 1 = n (số số hạng)

Tổng của dãy số trên là: (n + 1).n x 2 

A = (n + 1).n:2

 

 

 

Bình luận (0)
NH
7 tháng 10 2024 lúc 14:02

B = 1 + 3 + 5+ 7+ ...+ (2n - 1)

Dãy số trên là dãy số cách đều với khoảng cách là: 

     3 - 1 = 2

Số số hạng của dãy số trên là: (2n - 1 - 1) : 2 + 1 = n

Tổng của dãy số trên là:    (2n - 1 + 1) x n : 2 = n2

Vậy B = n2

 

   

Bình luận (0)
NH
7 tháng 10 2024 lúc 14:07

c; C = 1.2 + 2.3 + 3.4 + ...+ n.(n + 1)

  C = \(\dfrac{1}{3}\).(1.2.3 + 2.3.3 + 3.4.3 + ... + n.(n+1).3)

 C = \(\dfrac{1}{3}\)[1.2.3 + 2.3.(4 -1) + 3.4.(5- 2)+...+n.(n + 1).[(n+2) - (n-1)]

C = \(\dfrac{1}{3}\).[1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+n.(n +1)(n+2)-(n-1).n.(n+1)]

C = \(\dfrac{1}{3}\).n.(n+1).(n+2)

Bình luận (0)
JY
Xem chi tiết
NN
10 tháng 6 2016 lúc 7:21

tính tổng 1.2.3+2.3.4+3.4.5+...+n(n+1)(n+2)
bài này mình biết bấm = cách dùng sigma và X=X+1:A=A+X(X+1)(X+2)
nhưng bạn nào chỉ cho mình công thức tổng quát của tổng này ko? 


có thể chứng minh công thức tổng quát của Locquang dựa vào phân tích sau:

 

Sau đó ta áp dụng công thức trên cho n = 1, 2, ...., ta có:










Cộng vế theo vế ta có công thức tổng quát của Locquang

Bình luận (0)
CN
10 tháng 6 2016 lúc 8:55

 S=1.2.3+2.3.4+3.4.5+...+n.(n+1).(n+2)

4S= 1.2.3.(4-0)+2.3.4.(5-1)+3.4.5.(6-2)+...+n.(n+1).(n+2).[(n+3)-(n-1)]

4S= [1.2.3.4+2.3.4.5+3.4.5.6+...+n.(n+1).(n+2).(n+3)]-[0.1.2.3+1.2.3.4+2.3.4.5+...+(n-1).n.(n+1).(n+2)]

4S = n.(n+1).(n+2).(n+3) - 0.1.2.3

4S = n.(n+1).(n+2).(n+3)

 S= \(\frac{n.\left(n+1\right).\left(n+2\right).\left(n+3\right)}{4}\)

+, Ghi chú: Tổng S cuối cùng chính là công thức cho mỗi bài toán dạng như trên

Ai đi qua xem bài mình thì k nha

Bình luận (0)
DN
Xem chi tiết
LK
7 tháng 5 2018 lúc 22:23

tao có:

2p=2/1.2.3+2/2.3.4+...+2/n.n(+1)n(n+2)

2p=3-1/1.2.3+4-2/1.2.3+...+(n+2)-n/n.(n+1).(n+2)

2p=3/1.2.3-1/1.2.3+4/2.3.4-2/2.3.4+...+(n+2)/n.(n+1).(n+2)-n/n.(n+1).(n+2)

2p=1/1.2-1/2.3+1/2.3-1/3.4+...+1/n.(n+1)-1/(n+1).(n+2)

2p=1/1.2-1/(n+1).(n+2)

2p=(n+!).(n+2)-2/(2n+2).(n+2)

suy ra p=(n+1).(n+2)-2/(2n+2).(2n+4)

2s=3-1/1.2.3+4-2/1.2.3+...+50-48/48.49.50

2s=3/1.2.3-1/1.2.3+4/2.3.4-2/2.3.4+...+50/49.50.48-48/48.50.49

2s=1/1.2-1/2.3+1/2.3-1/3.4+...+1/48.49-1/49.50

2s=1/1.2-1/49.50

'2s=1/2-1/2450

2s=1225/2450-1/2450

2s=1224/2450

s=612/1225

Bình luận (0)
NU
8 tháng 5 2018 lúc 9:27

\(P=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)}\)1

\(P=\frac{1}{2}\left(\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{n\left(n+1\right)\left(n+2\right)}\right)\)

\(P=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+\frac{1}{3\cdot4}-\frac{1}{4\cdot5}+...+\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)\)

\(P=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)\)

\(P=\frac{\left(\frac{1}{2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)}{2}\)

S cx tinh giong v

Bình luận (0)