H24

Tính tổng :

Sn = 1 / 1.2.3 + 1/ 2.3.4 + 1/3.4.5 + ...+ 1 / n(n + 1) ( n +2 )

DH
30 tháng 5 2018 lúc 17:00

\(S_n=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)}\)
\(2S_n=\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{\left(n+2\right)-n}{n\left(n+1\right)\left(n+2\right)}\)
\(2S_n=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)
\(2S_n=\frac{1}{1.2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)
\(S_n=\frac{1}{4}-\frac{1}{2\left(n+1\right)\left(n+2\right)}\)

Bình luận (0)
H24
30 tháng 5 2018 lúc 17:08

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)=\frac{n\left(n+3\right)}{4\left(n+1\right)\left(n+2\right)}\)

Bình luận (0)
AK
30 tháng 5 2018 lúc 17:10

Cách của bạn Đỗ Ngọc Hải cũng đúng . Mik có cách khác nè : 

\(S_n=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)}\)

\(\Rightarrow S_n=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)\)

\(\Rightarrow S_n=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)\)

\(\Rightarrow S_n=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)\)

\(\Rightarrow S_n=\frac{1}{4}-\frac{1}{2\left(n+1\right)\left(n+2\right)}\)

~ Ủng hộ nhé 

Bình luận (0)
H24
30 tháng 5 2018 lúc 18:45

\(S_n=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)}\)

\(\Rightarrow S_n=\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+...+\frac{\left(n+2\right)-n}{n.\left(n+1\right).\left(n+2\right)}\)

\(\Rightarrow2S_n=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{n\left(n+1\right)\left(n+2\right)}\)

\(\Rightarrow2S_n=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)

\(\Rightarrow2S_n=\frac{1}{1.2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)

\(\Rightarrow2S_n=\frac{1}{2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)

\(\Rightarrow2S_n=\frac{\left(n+1\right)\left(n+2\right)}{2\left(n+1\right)\left(n+2\right)}-\frac{2}{2\left(n+1\right)\left(n+2\right)}\)

\(\Rightarrow2S_n=\frac{\left(n+1\right)\left(n+2\right)-2}{2\left(n+1\right)\left(n+2\right)}=\frac{n^2+3n}{2\left(n+1\right)\left(n+1\right)}\)

\(\Rightarrow S_n=\frac{n^2+3n}{2\left(n+1\right)\left(n+2\right)}\div2=\frac{n^2+3n}{2.2\left(n+1\right)\left(n+2\right)}=\frac{n^2+3n}{4\left(n+1\right)\left(n+2\right)}\)

Vay ............................................

Bình luận (0)
AK
30 tháng 5 2018 lúc 20:56

Công thức : 

\(\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}\right)=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{6}\right)=\frac{1}{2}.\left(\frac{3}{6}-\frac{1}{6}\right)=\frac{1}{2}.\frac{2}{6}=\frac{1}{6}=\frac{1}{1.2.3}\)

~ Ủng hộ nhé 

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
NT
Xem chi tiết
JY
Xem chi tiết
DN
Xem chi tiết
NM
Xem chi tiết
KS
Xem chi tiết
T5
Xem chi tiết
NH
Xem chi tiết
NP
Xem chi tiết