Những câu hỏi liên quan
NA
Xem chi tiết
HH
13 tháng 2 2016 lúc 16:42

Câu 1: 

x + 5/4 = 0 => x = -5/4

x - 19/7 = 0 => x = 19/7

Lập bảng: 

P/s: Edogawa Conan: Cái bảng của bạn cho mình cop nha! Thanks! Tí mik trả bạn 1 ! OK?

x                  -5/4                                      19/7                 
x + 5/4          -         0                    +                    /           + 
x - 19/7          -         /                     -                    0           +
( x + 5/4 ) ( x - 19/7 )          +         0                   -                    0           +

Suy ra   -5/4 <   x   <   19/7

Hay     -1,25 <   x   <  2,(714285)

Mặt khác x thuộc Z nên x = -1, 0, 1, 2

Câu 2:

            2xy + 4y   = 6

           2 (xy + 2y) = 6

          => xy + 2y = 6 / 2 = 3

         => xy + 2y = 3

        => y (x + 2) = 3

Từ đó lập bảng phân tích 3 = 1 . 3 = (-1) . (-3)

Mik khỏi lập bảng!

Từ bảng trên ta có y = {-3; -1; 1; 3}

Câu 3:

     x + y = 8, x + z = 10, y + z  = 12

=> (x + y) + (x + z)    +  (y + z) =  8 + 10 + 12 = 30

=> 2(x + y + z) = 30

=> x + y + z = 15

Đến đây thì dễ rồi! ^^

Câu 4:

(x + 3) = +5 Hoặc -5

Nhưng đề hỏi là x^3 > 0 = .....

Nên ta chọn (x + 3) = 5 (tại nếu chọn x + 3 = -5 thì x sẽ < 0 dẫn đến x^3 < 0

Ta có x + 3 = 5

Từ đó có x = 8

Đến đây thì dễ dàng tính ra x^3 bằng mấy và thỏa mãn x > 0....

 * ♥ * Xong! * ♫ *

 * ♥ * nha! * ♫ *

 

 

Bình luận (0)
EC
13 tháng 2 2016 lúc 16:18

C1: Lập bảng xét dấu tích:

x + 5/4 = 0 => x = -5/4

x - 19/7 = 0 => x = 19/7

Ta có:

x                  -5/4                                      19/7                 
x + 5/4          -         0                    +                    /           + 
x - 19/7          -         /                     -                    0           +
( x + 5/4 ) ( x - 19/7 )          +         0                   -                    0           +

Vậy -5/4 < x < 19/7

Bình luận (0)
EC
13 tháng 2 2016 lúc 16:24

C3: (x+y)+(x+z)+(y+z)=8+10+12

  => 2(x+y+z)=30

  => x+y+z=15

  => x=15-12=3

       y=15-10=5

       z=15-8=7

Bình luận (0)
H24
Xem chi tiết
TN
Xem chi tiết
KN
11 tháng 1 2021 lúc 19:06

Có: \(4x^2-3xy-y^2-p\left(3x+2y\right)=2p^2\Leftrightarrow\left(4x+y\right)\left(x-y\right)-p\left(3x+2y\right)=2p^2\)\(\Leftrightarrow\left[\left(3x+2y\right)+\left(x-y\right)\right]\left(x-y\right)-p\left(3x+2y\right)=2p^2\)\(\Leftrightarrow\left(3x+2y\right)\left(x-y\right)-p\left(3x+2y\right)+\left(x-y\right)^2-p^2=p^2\)\(\Leftrightarrow\left(3x+2y\right)\left(x-y-p\right)+\left(x-y-p\right)\left(x-y+p\right)=p^2\)\(\Leftrightarrow\left(x-y-p\right)\left(4x+y+p\right)=p^2=1.p^2\)

Do \(4x+y+p>x-y-p\)nên \(\hept{\begin{cases}x-y-p=1\left(1\right)\\4x+y+p=p^2\left(2\right)\end{cases}}\)(Do p là số nguyên tố)

Lấy (1) + (2), ta được: \(5x=p^2+1\Rightarrow5x-1=p^2\)(là số chính phương, đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
NQ
Xem chi tiết
NQ
Xem chi tiết
D3
Xem chi tiết
NQ
8 tháng 1 2016 lúc 19:18

hihi Cũng dễ

Bạn chỉ cần xét từng trường hợp thôi

Bình luận (0)
D3
8 tháng 1 2016 lúc 19:21

bạn giải ra đi!    

Bình luận (0)
VT
Xem chi tiết
MX
Xem chi tiết
NT
Xem chi tiết
HH
8 tháng 10 2018 lúc 20:29

Q=\(\left(1+\dfrac{a}{x}\right)\left(1+\dfrac{a}{y}\right)\left(1+\dfrac{a}{z}\right)\)

\(Q=\left(\dfrac{x+a}{x}\right)\left(\dfrac{y+a}{y}\right)\left(\dfrac{z+a}{z}\right)\)\

=\(\left(\dfrac{2x+y+z}{x}\right)\left(\dfrac{2y+x+z}{y}\right)\left(\dfrac{2z+x+y}{z}\right)\)

=\(\dfrac{\left(2x+y+z\right)\left(2y+x+z\right)\left(2z+x+y\right)}{xyz}\)

ÁP dụng BĐT cô si

\(2x+y+z=x+x+y+z\ge4\sqrt[4]{x^2yz}\)

\(2y+x+z=y+y+x+z\ge4\sqrt[4]{y^2xy}\)

\(2z+y+x=z+z+x+y\ge4\sqrt[4]{z^2xy}\)

=> Q\(\ge\dfrac{64.\sqrt[4]{x^4y^4z^4}}{xyz}=64\)

=> MinQ=64 khi x=y=z=a/3

Bình luận (0)