Cho (p) y=x^2 và (d) y= 2mx+1
Tính giá trị của biểu thức T = |x1|+|x2|-√(x1^2+2mx2+3) với x1 ;x2 là hoành độ các giao điểm của (p) và (d)
Cho phương trình: x2 - 2mx +m -1 = 0 (1)
a/ Chứng tỏ phương trình (1) luôn có hai nghiệm x1 , x2 với mọi giá trị của m
b/ Tính tổng và tích của x1 , x2
c/ Tính giá trị của biểu thức A= 2mx1 + x22 - 2mx2 - x12 +1
Lời giải:
a) $\Delta'=m^2-(m-1)=m^2-m+1=(m-\frac{1}{2})^2+\frac{3}{4}\geq \frac{3}{4}>0$ với mọi $m\in\mathbb{R}$ nên pt luôn có 2 nghiệm phân biệt với mọi $m\in\mathbb{R}$
b)
Theo định lý Viet:
$x_1+x_2=2m$
$x_1x_2=m-1$
c)
$A=2mx_1+x_2^2-2mx_2-x_1^2+1$
$=2m(x_1-x_2)+x_2^2-x_1^2+1$
$=(x_1+x_2)(x_1-x_2)+x_2^2-x_1^2+1$
$=x_1^2-x_2^2+x_2^2-x_1^2+1$
$=1$
$=
Cho (P): y=\(x^2\) và đường thẳng (d): y=2mx-\(m^2\)+4
Gọi x1,x2 là hoành độ giao điểm của (d) và (P). Tìm giá trị của m để x1,x2 thỏa mãn \(\dfrac{1}{x_{1}}+\dfrac{3}{x_{2}}=1\)
Bài 2: Cho biết x và y là hai đại lượng tỉ lệ thuận, x1 và x2 là hai giá trị khác nhau của x, y1 và y2 là hai giá trị tương ứng của y. Biết y2 = -8, x2 = 1 a) Tìm công thức biểu diễn y theo x b) Tính x1, biết y1 = -10. *c) Tính x2, y2 biết x2 + y2 = -28, x1 = -2, y1 = 10 .
Cho phương trình x2 - 2mx + 2m - 1 = 0 (1). Tìm giá trị của m để hai nghiệm x1,x2 thỏa mãn: (x12 - 2mx1 + 3)(x22 - 2mx2 - 2) = 50
Ptr có nghiệm `<=>\Delta' > 0`
`<=>(-m)^2-2m+1 > 0`
`<=>(m-1)^2 > 0<=>m-1 ne 0<=>m ne 1`
`=>` Áp dụng Viét có: `{(x_1+x_2=-b/a=2m),(x_1.x_2=c/a=2m-1):}`
Ta có: `(x_1 ^2-2mx_1 +3)(x_2 ^2-2mx_2 -2)=50`
`<=>[x_1 ^2-(x_1+x_2)x_1+3][x_2 ^2-(x_1+x_2)x_2 -2]=50`
`<=>(-x_1.x_2+3)(-x_1.x_2-2)=50`
`<=>(1-2m+3)(1-2m-2)=50`
`<=>(4-2m)(-1-2m)=50`
`<=>-4-8m+2m+4m^2=50`
`<=>4m^2-6m-54=0`
`<=>4m^2+12m-18m-54=0`
`<=>(m+3)(4m-18)=0<=>[(m=-3),(m=9/2):}` (t/m)
Cho phương trình x^2 -2mx+4m-4=0 (1) , m là tham số
a)Gia phương trình với m=1
b)Tìm giá trị của m để phương trình (1) có hai nghiệm phân biệt x1,x2 thỏa mãn điều kiện x1^2 +2mx2 -8m+5=0
tìm m để pt: \(x^2-2mx+2m^2-4m+3=0\)
có 2 nghiệm x1,x2 và biểu thức A=\(x1^2+x2^2+3x1x2\)
đạt giá trị Max
\(\Delta'=m^2-\left(2m^2-4m+3\right)=-m^2+4m-3\)
\(=-\left(m^2-4m+4-4\right)-3=-\left(m-2\right)^2+1\)
Để pt trên có 2 nghiệm x1 ; x2 khi \(0\le-\left(m-2\right)^2+1\le1\)
Theo Vi et : \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=2m^2-4m+3\end{matrix}\right.\)
\(A=\left(x_1+x_2\right)^2+x_1x_2\)
\(=4m^2+2m^2-4m+3=6m^2-4m+4\)
bạn kiểm tra lại đề xem có vấn đề gì ko ?
\(\Delta'=m^2-\left(2m^2-4m+3\right)=-m^2+4m-3\ge0\Rightarrow1\le m\le3\)
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=2m^2-4m+3\end{matrix}\right.\)
\(A=\left(x_1+x_2\right)^2+x_1x_2\)
\(=\left(2m\right)^2+2m^2-4m+3\)
\(=6m^2-4m+3\)
Xét hàm \(f\left(m\right)=6m^2-4m+3\) trên \(\left[1;3\right]\)
\(-\dfrac{b}{2a}=\dfrac{1}{3}< 1;a=6>0\Rightarrow f\left(m\right)\) đồng biến trên \(\left[1;3\right]\)
\(\Rightarrow f\left(m\right)_{max}=f\left(3\right)=45\) khi \(m=3\)
Hàm số y = x 3 3 - x 2 - x đạt giá trị lớn nhất, giá trị nhỏ nhất trên đoạn [-1;3]tại 2 điểm x 1 ; x 2 . Tính giá trị của biểu thức M = x 1 + x 2 + x 1 . x 2
A. M = 11 10
B. M = 9 10
C. M = 1
D. M = 3 4
b1 cho hai đại lượng tỉ lệ nghịch x và y, x1 và x2 là 2 giá trị của x, y1,y2 là 2 giá trị của y a)biết x1=5,x2=2 và y1+y2=21. tính y1 và y2
b)biết x2 =-4,y1=-10và 3x1-2y2=32.tính x1 và y2
b2 cho hai đại lượng tỉ lệ nghịch x và y, x1 và x2 là hai giá trị của x, y1 và y2 là hai giá trị tương ứng của y: a) Biết x1=3, x2=2 và 2y1+3y2=-26. Tính y1 và y2.
b) Biết x2=-4, y1=-10 và 3x1-2y2=32. Tính x1 và y2.
giúp mình với nhé các bạn
cảm ơn các bạn trước
Cho x và y là hai đại lượng tỉ lệ thuận : x1 và x2 là 2 giá trị khác nhau của x ; y1 và y2 là 2 giá trị tương ứng của y .
a) tính x1 biết x2 = 2 ; y1 = -3/4 và y2 = 1/7
b) tính x1 , y1 biết rằng : y1- x1 = -2 ; x2= -4 ; y2 = 3
a, Theo tính chất của tỉ lệ thuận ta có:
x1y1=x2y2=x1−34=217x1y1=x2y2=x1−34=217
⇒x1=(−34⋅2):17=−32⋅7=−212⇒x1=(−34⋅2):17=−32⋅7=−212
Vậy..............................
b, Theo t/c của tỉ lệ thuận ta có:
x1x2=y1y2x1x2=y1y2 hay x1−4=y13x1−4=y13
Áp dụng t/c của dãy tỉ số = nhau ta có:
x1−4=y13=y1−x13−(−4)=−27x1−4=y13=y1−x13−(−4)=−27
⇒⎧⎩⎨⎪⎪⎪⎪x1=−27⋅(−4)=87y1=−27⋅3=−67⇒{x1=−27⋅(−4)=87y1=−27⋅3=−67
Vậy.............