chứng minh\(\sqrt{7}\)lá số vô tỷ
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
chứng minh là số vô tỷ
\(\sqrt{2-\sqrt{3}}\)
Chứng minh : \(\sqrt{2018}\)là số vô tỷ .
Giả sử \(\sqrt{2018}\) là số hữu tỉ
\(\Rightarrow\) \(\sqrt{2018}\) có thể viết được dưới dạng \(\sqrt{2018}=\frac{m}{n}\left(m;n\in Z;\left(m;n\right)=1;n\ne1\right)\)
\(\Leftrightarrow2018=\frac{m^2}{n^2}\Rightarrow m^2⋮n^2\Rightarrow m⋮n\) Mà \(\left(m;n\right)=1\Rightarrow n=1\) Trái với giả thiết
\(\Rightarrow\) Điều giả sử sai \(\Rightarrow\sqrt{2018}\) là số vô tỉ
Giả sử \(\sqrt{2018}\)không phải là số vô tỷ, khi đó :
\(\sqrt{2018}\)là số hữu tỷ.
\(\Rightarrow\sqrt{2018}=\frac{m}{n}\left(m,n\inℕ^∗\right);\left(m.n\right)=1\)
\(\Rightarrow2018=\left(\frac{m}{n}\right)^2=\frac{m^2}{n^2}\)
\(\Rightarrow2018.n^2=m^2\)
\(\Rightarrow m^2⋮2018\)
\(\Rightarrow m^2⋮2\left(2018⋮2\right)\)
\(\Rightarrow m⋮2\)( Vì 2 là số nguyên tố )
\(\Rightarrow m=2k\left(k\inℕ\right)\)
Do đó : \(2018.n^2=\left(2k\right)^2\)
\(\Rightarrow2018.n^2=4k^2\)
\(\Rightarrow1009.n^2=2k^2\)
\(\Rightarrow1009.n^2⋮2\)
\(\Rightarrow n^2⋮2\)( vì \(\left(1009,2\right)=1\))
\(\Rightarrow n⋮2\)( Vì 2 là số nguyên tố )
Như vậy : \(m⋮2;n⋮2\)trái với \(\left(m,n\right)=1\)
Chứng tỏ điều giả sử ko xảy ra.
Vậy \(\sqrt{2018}\)là số vô tỷ
Chứng minh \(\sqrt{5}\)là số vô tỷ .
Lê Minh Cường
Cm \(\sqrt{5}\)là số vô tỉ
Giải
Giả sử \(\sqrt{5}\)là số vô tỉ thì khi đó \(\sqrt{5}\) được viết dưới dạng \(\frac{m}{n}\)
\(\sqrt{5}=\frac{m}{2}\Rightarrow5=\frac{m^2}{n^2}\) ( * )
Ở đẵng thức ( * ) cm m2 \(⋮\) 5 => m \(⋮\)5
Đặt m = 5k ta có : m2 = 25k2 ( **)
Từ ( * ) và ( ** ) suy ra :
5n2 = 25k2 => n2 = 5k2 ( ***)
Đẳng thức ( ***) cm n2 \(⋮\)5 mà 5 là số nguyên tố nên n \(⋮\)5
Vậy m,n chia hết cho 5 nên \(\frac{m}{n}\) chưa thể tối giản ( trái với gt ) nên \(\sqrt{5}\) là số hữu tỉ.
P/s : có 1 câu hỏi mà bảo dài dòng tek!?
VD: \(\sqrt{5}\)là số hữu tỉ
\(\Rightarrow\sqrt{5}=\frac{a}{b}\left(a,b\in z;b\ne0\right)\)
Tổng quát VD \(\left(a;b\right)=1\)
\(\Rightarrow5=\frac{a^2}{b^2}\)
\(\Leftrightarrow a^2=5b^2\)
\(\Rightarrow a^2⋮5\)
Ta có : 5 số nguyên tố
\(\Rightarrow a⋮5\)
\(\Rightarrow a^2⋮25\)
\(\Rightarrow5b^2⋮25\)
\(\Rightarrow b^2⋮5\)
\(\Rightarrow b⋮5\)
\(\Rightarrow\left(a;b\right)\ne1\)
\(\Rightarrow\)giả sử bị sai
\(\Rightarrow\sqrt{5}\)là số vô tỷ
Chứng minh\(\sqrt{2}\) là số vô tỷ
tương tự ví dụ 11, trang 22, Sách Nâng cao và phát triển Toán 7,
Chứng minh rằng \(\sqrt{2}\) là số vô tỷ
chứng minh rằng nếu p là số nguyên tố thì \(\sqrt{p}\) là số vô tỷ
Chứng minh rằng:
a) Tổng của 1 số hữu tỉ và 1 số vô tỉ là 1 số vô tỷ.
b) Tích của 1 số hữu tỷ khác 0 và 1 số vô tỷ là số vô tỷ.
Tổng của 1 số hữu tỉ và 1 số vô tỷ là 1 số vô tỷ. Hãy chứng minh
chứng minh\(\sqrt{ }\)7 là số vô tỉ
Giả sử \(\sqrt{7}\) là số hữu tỉ
Ta có :
\(\sqrt{7}=\dfrac{a}{b}\) (a,b nguyên tố cũng nhau)
\(\Leftrightarrow\dfrac{a^2}{b^2}=7\)
\(\Leftrightarrow a^2=7b^2\)
\(\Leftrightarrow a^2⋮7\) Mà 7 là số nguyên tố
\(\Leftrightarrow a⋮7\) \(\left(1\right)\)
\(\Leftrightarrow a^2⋮49\)
\(\Leftrightarrow7b^2⋮49\)
\(\Leftrightarrow b⋮7\) \(\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow a,b\) không ngto cùng nhau
\(\Leftrightarrow\) Giả sử sai
Vậy..