Tìm tất cả các số nguyên tố m,n biết rằng m^n .n^m = (2m+n+1).(2n+m+1)
Tìm tất cả các số nguyên m, n biết rằng:
mn . nm = (2m + n + 1)(2n + m + 1)
tìm tất cả các số nguyên tố m,n sao cho n^3-2n^2+2n-4=m
Tìm tất cả các cặp số tự nhiên (m,n) sao cho 2m+1 chia hết cho n và 2n+1 chia hết cho m.
tìm tất cả các số nguyên dương m,n thỏa mãn ; 9^m-3^m=n^4+2n^3+n^2+2n
Cho m, n là 2 số tự nhiên, biết rằng khi khai triển ra các thừa số nguyên tố thì m, n đều được tạo thành từ 7 số nguyên tố lẻ là p1, p2, p3, p4, p5, p6, p7 và m có tất cả 1024 ước số, n có 256 ước số. Chứng minh rằng tích m.n khi chia cho 4 sẽ có số dư là 1.
Tìm tất cả các số nguyên dương m,n thỏa mãn \(9^m-3^m=n^4+2n^3+n^2+2n\)
1. tìm tất cả các số nguyên dương m, n thỏa mãn:
\(3^m=n^2+2n-8\)
Cho 2 stn m và n
a) Cm trong 4 kết luận sau có 2 kết luận mau thuẫn với nhau:
1. m + 1 chia hết cho n.
2. m= 2n+5.
3. m+n là B(3).
4. m+7n là số nguyên tố.
b) Tìm tất cả các số tự nhiên m và n thỏa mãn 3 điều kiên trên.
Tìm tất cả các số nguyên dương m,n sao cho p = m^2+n^2 là số nguyên tố và m^3+n^3 - 4 chia hết cho p