Những câu hỏi liên quan
NP
Xem chi tiết
VN
5 tháng 3 2019 lúc 21:04

x,y,z=0

Bình luận (0)
TT
1 tháng 9 2020 lúc 12:56

Đặt \(\frac{x}{2011}=\frac{y}{2012}=\frac{z}{2013}=k\)

\(\Rightarrow\hept{\begin{cases}x=2011k\\y=2012k\\z=2013k\end{cases}}\)

+) Ta có : \(\frac{2012z-2013y}{2011}=\frac{2012.2013k-2013.2012k}{2011}=0\)

\(\frac{2013x-2011z}{2012}=\frac{2013.2011k-2011.2013k}{2012}=0\)

\(\frac{2011y-2012x}{2013}=\frac{2011.2012k-2012.2011k}{2013}=0\)

Do đó : \(\frac{2012z-2013y}{2011}=\frac{2013x-2011z}{2012}=\frac{2011y-2012x}{2013}\left(=0\right)\) ( đpcm )

Bình luận (0)
 Khách vãng lai đã xóa
LD
1 tháng 9 2020 lúc 14:42

Đặt \(\frac{x}{2011}=\frac{y}{2012}=\frac{z}{2013}=k\Rightarrow\hept{\begin{cases}x=2011k\\y=2012k\\z=2013k\end{cases}}\)

\(\frac{2012z-2013y}{2011}=\frac{2012\cdot2013k-2013k\cdot2012}{2011}=\frac{0}{2011}=0\)(1)

\(\frac{2013x-2011z}{2012}=\frac{2013\cdot2011k-2011\cdot2013k}{2012}=\frac{0}{2012}=0\)(2)

\(\frac{2011y-2012x}{2013}=\frac{2011\cdot2012k-2012\cdot2011k}{2013}=\frac{0}{2013}=0\)(3)

Từ (1) , (2) và (3) => đpcm

Bình luận (0)
 Khách vãng lai đã xóa
CT
Xem chi tiết
PC
Xem chi tiết
NH
1 tháng 1 2023 lúc 12:41

2012 . | x - 2011| + (x-2011)2 = 2013 . | 2011 - x|

|x-2011|.|x-2011| + 2012 . | x - 2011| - 2013 . | 2011- x| =0

|x - 2011|.| x - 2011| + 2012 .| x - 2011| - 2013 | x - 2011| = 0

| x- 2011| .| x -2011|  - | x - 2011| = 0

| x - 2011|. { | x - 2011| - 1} = 0

\(\left[{}\begin{matrix}\left|x-2011\right|=0\\\left|x-2011\right|-1=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=2011\\x=2012\\x=2010\end{matrix}\right.\)

Kết luận x \(\in\) { 2010; 2011; 2012}

Bình luận (0)
PN
Xem chi tiết
NL
Xem chi tiết
NN
20 tháng 4 2017 lúc 10:52

Đặt \(\hept{\begin{cases}a=x+2011\\b=y+2011\\c=z+2011\end{cases}}\) Ta có Hệ:

\(\hept{\begin{cases}\sqrt{a}+\sqrt{b+1}+\sqrt{c+2}\left(A\right)=\sqrt{b}+\sqrt{c+1}+\sqrt{a+2}\left(B\right)\\\sqrt{b}+\sqrt{c+1}+\sqrt{a+2}\left(B\right)=\sqrt{c}+\sqrt{a+1}+\sqrt{b+2}\left(C\right)\end{cases}}\)

Vai trò \(x,y,z\) bình đẳng

Giả sử \(c=Max\left(a;b;c\right)\) vì \(A=C\) ta có:

\(\sqrt{a}+\sqrt{b+1}+\sqrt{c+2}=\sqrt{c}+\sqrt{a+1}+\sqrt{b+2}\)

\(\Leftrightarrow\left(\sqrt{a+1}-\sqrt{a}\right)+\left(\sqrt{b+2}-\sqrt{b+1}\right)\)

\(=\sqrt{c+2}-\sqrt{c}=\left(\sqrt{c+2}-\sqrt{c+1}\right)+\left(\sqrt{c+1}-\sqrt{c}\right)\)

\(\Leftrightarrow\frac{1}{\sqrt{a+1}+\sqrt{a}}+\frac{1}{\sqrt{b+2}+\sqrt{b+1}}\)

\(=\frac{1}{\sqrt{c+2}+\sqrt{c+1}}+\frac{1}{\sqrt{c+1}+\sqrt{c}}\left(1\right)\)

Mặt khác \(\hept{\begin{cases}c\ge a\Rightarrow\frac{1}{\sqrt{a+1}+\sqrt{a}}\le\frac{1}{\sqrt{c+1}+\sqrt{c}}\\c\ge b\Rightarrow\frac{1}{\sqrt{b+2}+\sqrt{b+1}}\le\frac{1}{\sqrt{c+2}+\sqrt{c+1}}\end{cases}}\)

Suy ra \(\left(1\right)\) xảy ra khi \(a=b=c\Leftrightarrow x=y=z\) (Đpcm)

Bình luận (0)
PP
Xem chi tiết
TC
Xem chi tiết
PT
24 tháng 4 2017 lúc 21:43

bạn ơi,đáp án bằng 2024 đó.

Bình luận (0)
HK
25 tháng 6 2020 lúc 17:03

đáp án 100% là 2024

Bình luận (0)
 Khách vãng lai đã xóa
NN
6 tháng 8 2020 lúc 15:39

Kết quả là 2024 nha bạn

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
AN
1 tháng 7 2017 lúc 17:48

Giả sử z là số lớn nhất trong 3 số 

Từ đề bài ta có:

\(\sqrt{x+2011}+\sqrt{y+2012}+\sqrt{z+2013}=\sqrt{z+2011}+\sqrt{x+2012}+\sqrt{y+2013}\)

\(\Leftrightarrow\sqrt{x+2012}-\sqrt{x+2011}+\sqrt{y+2013}-\sqrt{y+2012}=\sqrt{z+2012}-\sqrt{z+2011}+\sqrt{z+2013}-\sqrt{z+2012}\)

\(\Leftrightarrow\frac{1}{\sqrt{x+2012}+\sqrt{x+2011}}+\frac{1}{\sqrt{y+2013}+\sqrt{y+2012}}=\frac{1}{\sqrt{z+2012}+\sqrt{z+2011}}+\frac{1}{\sqrt{z+2013}+\sqrt{z+2012}}\)

Ta lại có:

\(\hept{\begin{cases}\frac{1}{\sqrt{x+2012}+\sqrt{x+2011}}\ge\frac{1}{\sqrt{z+2012}+\sqrt{z+2011}}\\\frac{1}{\sqrt{y+2013}+\sqrt{y+2012}}\ge\frac{1}{\sqrt{z+2013}+\sqrt{z+2012}}\end{cases}}\)

Dấu = xảy ra khi x = y = z

Tương tự cho trường hợp x lớn nhất với y lớn nhất.

Bình luận (0)
H24
5 tháng 7 2017 lúc 18:01

fdy 'rshniytguo;yhuyt65edip;ioy86fo87ogtb eubuiltgr6sdwjhytguyh8 ban oi bai nay mac kho giai vao cut sit

Bình luận (0)
HT
Xem chi tiết
NT
8 tháng 12 2022 lúc 13:16

=>2012|x-2011|-|x-2011|+(x-2011)^2+2013>0

=>2011|x-2011|+(x-2011)^2+2013>0(luôn đúng)

Bình luận (0)