Những câu hỏi liên quan
QM
Xem chi tiết
VL
Xem chi tiết
NL
Xem chi tiết
ZT
Xem chi tiết
VB
17 tháng 8 2021 lúc 13:17

D E F M N I R

a, có DM _|_ EF và EN _|_ DF (gt)

=> ^IMF = ^INF = 90

=> M;N thuộc đường tròn đường kính IF (Định lí)

=> F;N;I;M thuộc đường tròn đk IF

b, có DM _|_ EF và EN _|_ DF (gt)

=> ^END = ^DME  = 90

=> N;M thuộc đường tròn đk DE

=> D;N;M;E cùng thuộc đường tròn đk DE

Bình luận (0)
 Khách vãng lai đã xóa
LP
Xem chi tiết
JN
Xem chi tiết
VQ
20 tháng 10 2016 lúc 19:30

a,Nếu n = 3k thì n² + 1 = (3k)² + 1 = 9k² + 1 chia 3 dư 1 
Nếu n = 3k + 1 thì n² + 1 = (3k + 1)² + 1 = 9k² + 6k + 2 chia 3 dư 2 
Nếu n = 3k + 2 thì n² + 1 = (3k + 2)² + 1 = 9k² + 12k + 5 chia 3 dư 2 
Vậy vớj mọj n thuộc Z, n^2 + 1 không chia hết cho 3

b,chọn n=1 => 10+18-1=27 chia hết cho 27 (luôn đúng) 
giả sử với mọi n=k (k thuộc N*) thì ta luôn có 10^k+18k-1 chia hết cho 27. 
Cần chứng minh với n=k+1 thì 10^(k+1)+18(k+1)-1 chia hết cho 27. 
Ta có 10^(k+1)+18(k+1)-1= 10*10^k+18k+18-1 
= (10^k+18k-1)+9*10^k+18 
= (10^k+18k-1)+9(10^k+2) 
ta có: (10^k+18k-1) chia hết cho 27 => 10^(k+1)+18(k+1)-1 chia hết cho 27 khi và chỉ khi 9(10^k+2) chia hết cho 27. 

Chứng minh 9(10^k+2) chia hết cho 27. 
chọn k=1 => 9(10+2)=108 chia hết cho 27(luôn đúng) 
giả sử k=m(với m thuộc N*) ta luôn có 9(10^m+2) chia hết cho 27. 
ta cần chứng minh với mọi k= m+1 ta có 9(10^(m+1)+2) chia hết cho 27. 
thật vậy ta có: 9(10^(m+1)+2)= 9( 10*10^m+2)= 9( 10^m+9*10^m+2) 
= 9(10^m+2) +81*10^m 
ta có 9(10^m+2) chia hết cho 27 và 81*10^m chia hết cho 27 => 9(10^(m+1)+2) chia hết cho 27 
=>9(10^k+2) chia hết cho 27 
=>10^(k+1)+18(k+1)-1 chia hết cho 27 
=>10^n+18n-1 chia hết cho 27=> đpcm

K MINH NHA!...............

Bình luận (0)
NM
10 tháng 5 2022 lúc 14:09

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bình luận (0)
TA
Xem chi tiết
NM
10 tháng 5 2022 lúc 14:09

                    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bình luận (0)
LT
Xem chi tiết
TP
Xem chi tiết
PH
19 tháng 12 2016 lúc 21:31

n2+n+1=n(n+1)+1

Vì vì n(n+1) là tích của hai số tự nhiên liên tiếp nên tích của chúng sẽ có chữ số tận cùng là 0,2,6 nên n(n+1)+1 sẽ có chữ số tận cùng là 1,3,7 không chia hết cho 4 vì các số sau đều là số lẻ. Tương tự, không chia hết cho 5, vì có chữ số tận cùng không phải 0,5 nén không chia hết cho 5.

Nhớ K MÌNH NHA!!!!!!!!!!!!!!

Bình luận (0)
H24
19 tháng 12 2016 lúc 21:24

ko hỉu viết đàng quàng tui chỉ cho

Bình luận (0)