Tì. Giá trị nhỏ nhất của pt:
P = x^2 + 6x + 13x
tìm giá trị nhỏ nhất của đa thức A= 13x^2+5y^2-8xy-6x-10y+27
a) tì giá trị lớn nhất của:
3,6 - x +2,5
b) tìm giá trị nhỏ nhất của:
x+ 1,5 - 4,5
Tìm giá trị nhỏ nhất biết: A= (x+2)^2 + 178
tìm giá trị nhỏ nhất của \(A=x^2-2x+5\)
tìm giá trị nhỏ nhất của \(B=2x^2-6x\)
tìm giá trị lớn nhất của \( C=4x-x^2+3\)
\(A=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\\ A_{min}=4\Leftrightarrow x=1\\ B=2\left(x^2-3x\right)=2\left(x^2-2\cdot\dfrac{3}{2}x+\dfrac{9}{4}\right)-\dfrac{9}{2}\\ B=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\\ B_{min}=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{3}{2}\\ C=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\\ C_{max}=7\Leftrightarrow x=2\)
a,\(A=x^2-2x+5=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\)
Dấu "=" \(\Leftrightarrow x=-1\)
b,\(B=2\left(x^2-3x\right)=2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{2}=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\)
Dấu "=" \(\Leftrightarrow x=\dfrac{3}{2}\)
c,\(=C=-\left(x^2-4x-3\right)=-\left[\left(x^2-4x+4\right)-7\right]=-\left(x-2\right)^2+7\le7\)
Dấu "=" \(\Leftrightarrow x=2\)
Tì giá trị nhỏ nhất của \(B=\frac{x}{2}+\frac{2}{x-1}\) với x > 1
Thấy B\(=\frac{x}{2}-\frac{1}{2}+\frac{2}{x-1}+\frac{1}{2}\)
\(=\left(\frac{x-1}{2}+\frac{2}{x-1}\right)+\frac{1}{2}\)
Do x>1>0 nên ADBDDT Cauchy
\(\frac{x-1}{2}+\frac{2}{x-1}\ge2\sqrt{\frac{x-1}{2}\cdot\frac{2}{x-1}}=2\)
Do đó B\(\ge2+\frac{1}{2}=\frac{3}{2}\)
Dấu = khi x=3
Nhầm B\(\ge2\sqrt{\frac{x-1}{2}\cdot\frac{2}{x-1}}=2\cdot2=4\)
Do đó B\(\ge4+\frac{1}{2}=\frac{9}{2}\)
Tìm giá trị nhỏ nhất của biểu thức
P(x)=-x2+13x+2012
tìm giá trị nhỏ nhất của M=9x^2-6x+6
tìm giá trị lớn nhất của M=5-2x-x^2; N=5+6x-9x^2
1) \(M=9x^2-6x+6=\left(9x^2-6x+1\right)+5=\left(3x-1\right)^2+5\ge5\)
\(minM=5\Leftrightarrow x=\dfrac{1}{3}\)
2) \(M=5-2x-x^2=-\left(x^2+2x+1\right)+6=-\left(x+1\right)^2+6\le6\)
\(maxM=6\Leftrightarrow x=-1\)
3) \(N=5+6x-9x^2=-\left(9x^2-6x+1\right)+6=-\left(3x-1\right)^2+6\le6\)
\(maxN=6\Leftrightarrow x=\dfrac{1}{3}\)
Giá trị x nhỏ nhất thỏa mãn
x^4 -13x^2+36=0
Giá trị x nhỏ nhất thõa mãn x^4-13x^2+36=0