cho a,b,c,d thuộc N* thoả mãn a/b<c/d .Chứng minh rằng 2018a+c/2018b+d<c/a
cho a,b,c,d thuộc N* thoả mãn \(\frac{\text{a}}{b}< \frac{c}{d}\) . CMR: \(\frac{2018\text{a}+c}{2018b+d}< \frac{c}{d}\)
Có \(\frac{a}{b}< \frac{c}{d}=>a.d< c.b\)
<=>2018a.d<2018c.b
<=>2018a.d+c.d<2018c.b+c.d
<=>d(2018a+c)<c(2018b+d)
<=>đpcm
2018a+c/2018b+d<c/d
Vì a/b<c/d=>a.d<c.b
<=>2018a.d<2018b.c
<=>2018a.d+cd<2018b.c+cd
<=>d(2018a+c)<c(2018b+d)
<=>điều phải chứng minh
Cho a, b, c, d € N* thoả mãn a/b < c/d
C/m: (2014.a+c)/(2014.a+d)<c/d
Cho hai tập A={1;2;3;4;5} ; B={a,b,c,d} . Có bao nhiêu tập hợp có hai phần tử thoả mãn có một phần tử thuộc tập hợp A và một phần tử thuộc tập hợp B:
A. 16 B. 18 C. 20 D. 9
Lời giải:
Bổ sung điều kiện $a,b,c,d$ khác $1,2,3,4,5$
Cứ mỗi một phần tử thuộc tập hợp A, ta có 4 cách ghép với 1 phần tử thuộc tập hợp B
Mà tập hợp A có 5 phần tử nên số cách sắp xếp 1 phần tử thuộc tập hợp A, 1 phần tử thuộc tập hợp B để thành một tập hợp thỏa mãn đề là:
$5.4=20$
Đáp án C.
Cho a,b,c,d E N* thoả mãn a/b < c/d. Chứng minh rằng:2018a+c/2018b+d < c/d
\(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\)
\(\Rightarrow2019ad< 2019bc\)
\(\Rightarrow2019ad+cd< 2019bc+cd\)
\(\Rightarrow d\left(2019a+c\right)< c\left(2019b+d\right)\)
\(\Rightarrow\frac{2019a+c}{2019b+d}< \frac{c}{d}\left(đpcm\right)\)
Ta có \(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\)
\(\Leftrightarrow2018ad< 2018bc\)
\(\Leftrightarrow2018ad+cd< 2018bc+cd\)
\(\Leftrightarrow d\left(2018a+c\right)< c\left(2018b+d\right)\)
\(\Rightarrow\frac{2018a+c}{2018b+d}< \frac{c}{d}\left(đpcm\right)\)
cho a,b,c thuộc Z* thoả mãn a2-b2 =c2-d2
CMR: S= a+b+c+d là hợp số
cho a,,b,c Thuộc N; a,b,c>1 thoả mãn: ab+1 chia hết cho c; bc+1chia hết cho a; ca+1 chia hết cho b. hãy tìm 3 số a,b,c
a = 3 ; b = 2 ; c = 7
Ta có :
3 . 2 + 1 = 7 chia hết cho 7
2 . 7 + 1 = 15 chia hết cho 3
7 . 3 +1 = 22 chia hết cho 2
bài này khó ................................................................
ba số đó là 1 < a < b < c.ta có
ab + 1 chia hết cho c, bc + 1 chia hết cho a, ca + 1 chia hết cho b
Từ đó suy ra (ab+1)(bc+1)(ca+1) chia hết cho abc
Suy ra ab + bc + ca +1 chia hết cho abc
Tức là ab + bc + ca + 1 = kabc với k là số nguyên dương.
=> 1/a + 1/b +1/c + 1/abc = k
Vì 1 < a < b < c nên VT < 1/2 + 1/3 + 1/4 + 1/24 < 2 suy ra k chỉ có thể là 1.
Nếu a ³ 3 thì b ³ 4, c ³ 5 và ta có VT £ 1/3 + 1/4 + 1/5 + 1/60 < 1 không thể là số nguyên. Vậy a chỉ có thể là 2. Nếu b ³ 4 thì c ³ 5 và ta có VT < 1/2 + 1/4 + 1/5 + 1/40 < 1. Vậy b chỉ có thể là 3. Thay vào phương trình, ta được 1/2 + 1/3 + 1/c + 1/6c = 1 => c = 7. Vậy có bộ ba số duy nhất thoả mãn đề bài là (2, 3, 7).
cho a,,b,c Thuộc N; a,b,c>1 thoả mãn: ab+1 chia hết cho c; bc+1chia hết cho a; ca+1 chia hết cho b. hãy tìm 3 số a,b,c
ba số đó là 1 < a < b < c.ta có
ab + 1 chia hết cho c, bc + 1 chia hết cho a, ca + 1 chia hết cho b
Từ đó suy ra (ab+1)(bc+1)(ca+1) chia hết cho abc
Suy ra ab + bc + ca +1 chia hết cho abc
Tức là ab + bc + ca + 1 = kabc với k là số nguyên dương.
=> 1/a + 1/b +1/c + 1/abc = k
Vì 1 < a < b < c nên VT < 1/2 + 1/3 + 1/4 + 1/24 < 2 suy ra k chỉ có thể là 1.
Nếu a ³ 3 thì b ³ 4, c ³ 5 và ta có VT £ 1/3 + 1/4 + 1/5 + 1/60 < 1 không thể là số nguyên. Vậy a chỉ có thể là 2. Nếu b ³ 4 thì c ³ 5 và ta có VT < 1/2 + 1/4 + 1/5 + 1/40 < 1. Vậy b chỉ có thể là 3. Thay vào phương trình, ta được 1/2 + 1/3 + 1/c + 1/6c = 1 => c = 7. Vậy có bộ ba số duy nhất thoả mãn đề bài là (2, 3, 7).
con ko biết thư có lm đúng ko nữa nên nếu lm đúng thi olm tick cho thư 1 cái đi
Cho a,b,c thuộc N thoả mãn a2=b2+c2 Chứng minh rằng axbxc chia hết cho 60