Những câu hỏi liên quan
TL
Xem chi tiết
PN
Xem chi tiết
KZ
31 tháng 3 2016 lúc 17:05

Hình như sai đề thì phải chứ mk làm ko đc !!!

Bình luận (0)

  A < 1/(1.2) + 1/(2.3) + 1/(3.4) + ...+ 1/(99.100) 
<=> A< 1- 1/2 + 1/2 - 1/3 + 1/4 - 1/5 + .. + 1/99 - 1/100 
<=> A < 1 - 1/100 < 1 (đpcm) 

So với  thì đây

Bình luận (0)
H24
Xem chi tiết
H24
15 tháng 4 2022 lúc 16:03

\(∘backwin\)

\(a ) ( x + 1 ) + ( x + 2 ) + ( x + 3 ) + ... + ( x + 100 ) = 5750\)

\( ( x + x + x + ... + x ) + ( 1 + 2 + 3 + ... + 100 ) = 5750 \)

\( 100 x + ( 1 + 100 ) ×100 : 2 = 5750\)

\(100 x + 5050 = 5750\)

\( 100 x = 5750 − 5050\)

\(100 x = 700\)

\(x = 700 : 100\)

\(x = 7\)

\(b,\) \(B=\)\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2021^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2020}+2021\)

\( B < 1 -\)\(\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2020}-\dfrac{1}{2021}\)

\(B<1-\)\(\dfrac{1}{2021}\)

\(B<\)\(\dfrac{2020}{2021}\)

\(\dfrac{2020}{2021}< 1\)

\(B<1\)

Bình luận (0)
TL
15 tháng 4 2022 lúc 16:03

a) (x+1) +(x+2 ) + ...+(x+100)=5750
= 100x + (1+2+3+...+100) = 5750
=100x + 5050 = 5750
--> 100x = 5750-5050=700
--> x=7

Bình luận (0)
TL
15 tháng 4 2022 lúc 16:07

b) Ta thấy: 1/2^2 < 1/2.3
                  1/3^2 < 1/3.4
                        ...
                  1/2021^2 < 1/2021.2022
--> B=1/2^2 + 1/3^2 + 1/4^2 + ...+ 1/2021^2 < 1/2.3 + 1/3.4 + ... +1/2021.2022 (1)
     Ta có: 1/2.3 + 1/3.4 + ... +1/2021.2022
         =1/2 - 1/3 + 1/3 - 1/4 + ... + 1/2021 - 1/2022
         =1/2 - 1/2022 < 1 (2)
Từ (1) và (2) --> B<1 (đpcm)
                                                                      < 
                                                                     

Bình luận (0)
NQ
Xem chi tiết
NN
Xem chi tiết
NN
18 tháng 2 2020 lúc 16:56

ai lam day du dau tien minh se k cho nha

Bình luận (0)
 Khách vãng lai đã xóa
NN
18 tháng 2 2020 lúc 16:57

minh can gap lam

Bình luận (0)
 Khách vãng lai đã xóa
.
18 tháng 2 2020 lúc 17:06

Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

Ta có : \(\frac{1}{2^2}< \frac{1}{1.2}\)

            \(\frac{1}{3^2}< \frac{1}{2.3}\)

            \(\frac{1}{4^2}< \frac{1}{3.4}\)

             ...

            \(\frac{1}{100^2}< \frac{1}{99.100}\)

\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow A< 1-\frac{1}{100}< 1\)

\(\Rightarrow A< 1\)

Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\).

Bình luận (0)
 Khách vãng lai đã xóa
LL
Xem chi tiết
NH
Xem chi tiết
PQ
25 tháng 4 2018 lúc 19:13

Đặt \(A=\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\) ta có : 

\(A< \frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(A< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(A< \frac{1}{2}-\frac{1}{100}< \frac{1}{2}\)

Vậy \(A< \frac{1}{2}\) ( đpcm ) 

Chúc bạn học tốt ~ 

Bình luận (0)
NH
25 tháng 4 2018 lúc 19:15

cam on

Bình luận (0)
LT
Xem chi tiết
XO
21 tháng 7 2019 lúc 8:58

Ta có : 1/2 = 0,5

            2/3 = 0,666...

=> 1/2 + 2/3 + ... + 99/100 = 0,5 + 0,666...+3/4 + ... + 99/100

                                           = 1,1,6666... + 3/4 + ... +99/100 > 1

=> 1/2 + 2/3 + ... + 99/100 > 1

Bình luận (0)
H24

 \(=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\le1\)

\(=\frac{2-1}{2}+\frac{3-1}{3}+\frac{4-1}{4}+...+\frac{100-1}{100}\)

 \(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\le1\)

\(\Rightarrow1-\frac{1}{100}\le1\)

Bình luận (0)
LH
21 tháng 7 2019 lúc 9:45

1/2 + 2/3 + 3/4 + ... + 99/100 < 1

= 2/2 - 1/2 + 3/3 - 1/3 + 4/4 - 1/4 + ... + 100/100 - 1/100

= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/99 - 1/100

= 1 - 1/100 < 1 (đpcm)

Bình luận (0)
DL
Xem chi tiết
HQ
13 tháng 4 2017 lúc 17:48

Đặt \(A=\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{100!}\)

Ta thấy:

\(\dfrac{1}{2!}=\dfrac{1}{1.2};\dfrac{1}{3!}=\dfrac{1}{1.2.3}< \dfrac{1}{2.3};...;\dfrac{1}{100!}=\dfrac{1}{1.2...100}< \dfrac{1}{99.100}\)

Cộng vế với vế ta được:

\(A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)

\(\Rightarrow A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(\Rightarrow A< 1-\dfrac{1}{100}< 1\)

Vậy \(\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{100!}< 1\) (Đpcm)

Bình luận (0)
TH
13 tháng 4 2017 lúc 17:48

\(\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+\dfrac{1}{100!}\)
\(=\left(\dfrac{1}{1!}-\dfrac{1}{2!}\right)+\left(\dfrac{1}{2!}-\dfrac{1}{3!}\right)+\left(\dfrac{1}{3!}-\dfrac{1}{4!}\right)+...+\left(\dfrac{1}{99!}-\dfrac{1}{100!}\right)\)
\(=1-\dfrac{1}{100!}< 1\)

Bình luận (0)