Những câu hỏi liên quan
ND
Xem chi tiết
JN
9 tháng 5 2016 lúc 22:04

B=1/4+(1/5+1/6+...+1/19)>1/4+15x1/20

B>1/4+15/20=1/4+3/4=1

\(\Rightarrow\)B>1

Bình luận (0)
ND
9 tháng 5 2016 lúc 21:42

help me

khocroi

Bình luận (0)
ND
9 tháng 5 2016 lúc 21:53

zúp mình zớiicon-chat

Bình luận (0)
NK
Xem chi tiết
PM
Xem chi tiết
H24
9 tháng 3 2017 lúc 22:17

A=1/2!+1/2!-1/3!+...+1/99!-1/100

  =1/2-1/100

  =49/100

Bình luận (0)
LP
9 tháng 3 2017 lúc 22:23

A=49/100.

Bình luận (0)
LA
Xem chi tiết
GV
22 tháng 5 2018 lúc 8:49

Bạn xem lời giải ở đây nhé:

Câu hỏi của AgustD - Toán lớp 9 - Học toán với OnlineMath

Bình luận (0)
DH
22 tháng 5 2018 lúc 8:58

\(\frac{1}{a}+\frac{1}{b}>=\frac{4}{a+b}\Rightarrow2>=\frac{4}{a+b}\Rightarrow a+b>=2\)   (bđt cauchy schwarz adangj engel) 

\(a^4+b^2>=2\sqrt{a^4b^2}=2a^2b;a^2+b^4>=2\sqrt{a^2b^4}>=2ab^2;\frac{1}{a}+\frac{1}{b}>=2\sqrt{\frac{1}{a}\cdot\frac{1}{b}}\Rightarrow2>=\frac{2}{\sqrt{ab}}\Rightarrow ab>=1\)(bđt cosi)
\(\Rightarrow\frac{1}{a^4+b^2+2ab^2}+\frac{1}{a^2+b^4+2a^2b}< =\frac{1}{2a^2b+2ab^2}+\frac{1}{2ab^2+2a^2b}=\frac{2}{2a^2b+2ab^2}=\frac{2}{2ab\left(a+b\right)}\)

\(=\frac{1}{ab\left(a+b\right)}< =\frac{1}{1\cdot2}=\frac{1}{2}\)

dấu = xảy ra khi a=b=1

Bình luận (0)
YP
Xem chi tiết
MK
24 tháng 3 2017 lúc 21:17

Câu của bạn hình như sai đề, nếu theo đề đúng thì là :

Ta có B = \(\frac{1}{4}\)+( \(\frac{1}{5}\)\(\frac{1}{6}\)+ ... + \(\frac{1}{19}\)) > \(\frac{1}{4}\)+ 15 . \(\frac{1}{20}\)

B > \(\frac{1}{4}\)\(\frac{15}{20}\)\(\frac{1}{4}\)\(\frac{3}{4}\)

   => B > 1

Nhớ cho mk 10 k nha

Bình luận (0)
LQ
24 tháng 3 2017 lúc 21:19

B = 1,464406324

Bình luận (0)
NT
24 tháng 3 2017 lúc 21:20

vì \(\frac{1}{5}\) ;\(\frac{1}{6}\).........\(\frac{1}{19}\) đề nhỏ hơn 1 nên 1+1+.....+1>1 =>B>1

Bình luận (0)
NT
Xem chi tiết
H24
13 tháng 3 2018 lúc 18:11

\(B=\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{8^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{7.8}=1-\frac{1}{8}< 1\)

Bình luận (0)
NU
13 tháng 3 2018 lúc 18:33

\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{8^2}\)

vì \(\frac{1}{2^2}>\frac{1}{1\cdot2}\)

\(\frac{1}{3^2}< \frac{1}{2\cdot3}\)

\(\frac{1}{4^2}< \frac{1}{3\cdot4}\)

\(...\)

\(\frac{1}{8^2}< \frac{1}{7\cdot8}\)

nên \(A< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{7\cdot8}\)         (1)

\(B=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{7\cdot8}\)

\(B=\frac{2-1}{1\cdot2}+\frac{3-2}{2\cdot3}+\frac{4-3}{3\cdot4}+...+\frac{8-7}{7\cdot8}\)

\(B=\left(\frac{2}{1\cdot2}-\frac{1}{1\cdot2}\right)+\left(\frac{3}{2\cdot3}-\frac{2}{2\cdot3}\right)+...+\left(\frac{8}{7\cdot8}-\frac{1}{7\cdot8}\right)\)

\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{7}-\frac{1}{8}\)

\(B=1-\frac{1}{8}\)

\(B=\frac{7}{8}< 1\)    (2)

(1)(2) \(\Rightarrow A< B< 1\)

\(\Rightarrow A< 1\) (đpct)

Bình luận (0)
MS
Xem chi tiết
VD
23 tháng 9 2016 lúc 12:14

Ta có:

\(B=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{99}\)

\(=2^{-1}+2^{-2}+2^{-3}+...+2^{-99}\)

\(\Rightarrow2B=1+2^{-1}+2^{-2}+...+2^{-98}\)

\(\Rightarrow2B-B=\left(1-2^{-99}\right)+\left(2^{-1}-2^{-1}\right)+\left(2^{-2}-2^{-2}\right)+...+\left(2^{-98}+2^{-98}\right)\)

\(\Rightarrow B=1-\frac{1}{2^{99}}\)

mà \(\frac{1}{2^{99}}>0\Rightarrow1-\frac{1}{2^{99}}< 1\Rightarrow B< 1\left(đpcm\right)\)

Bình luận (0)
NM
Xem chi tiết
NT
14 tháng 9 2016 lúc 19:19

b) \(\frac{\frac{-6}{5}+\frac{6}{19}-\frac{6}{23}}{\frac{9}{5}-\frac{9}{19}+\frac{9}{23}}=\frac{\left(-6\right).\left(\frac{1}{5}-\frac{1}{19}+\frac{1}{23}\right)}{9.\left(\frac{1}{5}-\frac{1}{19}+\frac{1}{23}\right)}=\frac{-6}{9}=\frac{-2}{3}\)

d) \(\frac{\frac{2}{3}-\frac{2}{5}-\frac{2}{7}+\frac{2}{11}}{\frac{13}{3}-\frac{13}{5}-\frac{13}{7}+\frac{13}{11}}=\frac{2\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}+\frac{1}{11}\right)}{13\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}+\frac{1}{11}\right)}=\frac{2}{13}\)

Bình luận (0)
ML
Xem chi tiết
NP
15 tháng 9 2016 lúc 12:39

Làm tiếp:

\(=\left(1+\frac{1}{2}+.....+\frac{1}{2017}\right)-\left(1+\frac{1}{2}+....+\frac{1}{1008}\right)\)

\(=\frac{1}{1009}+\frac{1}{1010}+.........+\frac{1}{2017}\)

\(\Rightarrow\frac{\frac{1}{1009}+....+\frac{1}{2017}}{1-\frac{1}{2}+.....+\frac{1}{2015}-\frac{1}{2016}+\frac{1}{2017}}=1\)

Bài 2:

Đặt \(A=\frac{1}{2^2}+.......+\frac{1}{2^{800}}\)

\(4A=1+\frac{1}{2^2}+.....+\frac{1}{2^{798}}\)

\(\Rightarrow4A-A=1-\frac{1}{2^{800}}\)

\(\Rightarrow3A=1-\frac{1}{2^{800}}< 1\Rightarrow A< \frac{1}{3}\)

Vậy \(\frac{1}{2^2}+\frac{1}{2^4}+........+\frac{1}{2^{800}}< \frac{1}{3}\)

Bình luận (0)
NP
15 tháng 9 2016 lúc 12:14

Bài 1:Tính

a,   Xét biểu thức \(\frac{\left(1+\frac{n}{1}\right)\left(1+\frac{n}{2}\right).........\left(1+\frac{n}{n+2}\right)}{\left(1+\frac{n+2}{1}\right)\left(1+\frac{n+2}{2}\right)..........\left(1+\frac{n+2}{n}\right)}\) với\(n\in N\)

Ta có:\(\frac{\left(1+\frac{n}{1}\right)\left(1+\frac{n}{2}\right).......\left(1+\frac{n}{n+2}\right)}{\left(1+\frac{n+2}{1}\right)\left(1+\frac{n+2}{2}\right)......\left(1+\frac{n+2}{n}\right)}\)

\(=\frac{\frac{n+1}{1}.\frac{n+2}{2}........\frac{2n+2}{n+2}}{\frac{n+3}{1}.\frac{n+4}{2}.........\frac{2n+2}{n}}\)

\(=\frac{\frac{\left(n+1\right)\left(n+2\right).......\left(2n+2\right)}{1.2.3.........\left(n+2\right)}}{\frac{\left(n+3\right)\left(n+4\right)........\left(2n+2\right)}{1.2.3.........n}}\)

\(=\frac{\left(n+1\right)\left(n+2\right).......\left(2n+2\right).1.2.3.......n}{\left(n+3\right)\left(n+4\right)........\left(2n+2\right).1.2.3......\left(n+2\right)}\)

\(=\frac{\left(n+1\right)\left(n+2\right)}{\left(n+1\right)\left(n+2\right)}=1\)

Áp dụng vào bài toán ta có đáp số là:1

b, \(\frac{\frac{-6}{5}+\frac{6}{19}-\frac{6}{23}}{\frac{9}{5}-\frac{9}{19}+\frac{9}{23}}=\frac{\left(-6\right).\left(\frac{1}{5}-\frac{1}{19}+\frac{1}{23}\right)}{9.\left(\frac{1}{5}-\frac{1}{19}+\frac{1}{23}\right)}=\frac{-6}{9}=-\frac{2}{3}\)

c,\(\frac{\frac{1}{6}-\frac{1}{39}+\frac{1}{51}}{\frac{1}{8}-\frac{1}{52}+\frac{1}{68}}=\frac{\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{13}+\frac{1}{17}\right)}{\frac{1}{4}.\left(\frac{1}{2}-\frac{1}{13}+\frac{1}{17}\right)}=\frac{\frac{1}{3}}{\frac{1}{4}}=12\)

d,\(\frac{\frac{2}{3}-\frac{2}{5}-\frac{2}{7}}{\frac{13}{3}-\frac{13}{5}-\frac{13}{7}}=\frac{2\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}\right)}{13\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}\right)}=\frac{2}{13}\)

e,Xét mẫu số ta có:

\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+..........+\frac{1}{2015}-\frac{1}{2016}+\frac{1}{2017}\)

\(=1+\frac{1}{2}-2.\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-2.\frac{1}{4}+.....+\frac{1}{2015}+\frac{1}{2016}-2.\frac{1}{2016}+\frac{1}{2017}\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+.......+\frac{1}{2017}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+.........+\frac{1}{2016}\right)\)

Bình luận (0)