Những câu hỏi liên quan
N1
Xem chi tiết
HD
16 tháng 3 2020 lúc 21:07

\(\text{GIẢI :}\)

ĐKXĐ : \(a\ne\pm1\).

\(M=\frac{1}{a^2-2a+1}-\left(\frac{a}{a^2-1}-\frac{1}{a^3-a}\right):\frac{a^2-2a+1}{a+a^3}\)

\(=\frac{1}{a^2-2a+1}-\left(\frac{a}{a^2-1}-\frac{1}{a\left(a^2-1\right)}\right):\frac{a^2-2a+1}{a+a^3}\)

\(=\frac{1}{a^2-2a+1}-\left(\frac{a^2}{a\left(a^2-1\right)}-\frac{1}{a\left(a^2-1\right)}\right):\frac{a^2-2a+1}{a+a^3}\)

\(=\frac{1}{a^2-2a+1}-\frac{a^2-1}{a\left(a^2-1\right)}:\frac{\left(a-1\right)^2}{a\left(1+a^2\right)}\)

\(=\frac{1}{a^2-2a+1}-\frac{\left(a-1\right)^2}{a\left(a^2-1\right)}\cdot\frac{a\left(a^2+1\right)}{1+a^2}\)

\(=\frac{1}{a^2-2a+1}-\frac{\left(a-1\right)^2}{1+a^2}=\frac{-a^2}{\left(a-1\right)^2}\).

Bình luận (0)
 Khách vãng lai đã xóa
BT
Xem chi tiết
TD
Xem chi tiết
TH
Xem chi tiết
NT
6 tháng 7 2021 lúc 20:14

1) Để biểu thức có nghĩa thì \(a^2+2a-3\ge0\)

\(\Leftrightarrow\left(a+3\right)\left(a-1\right)\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}a-1\ge0\\a+3\le0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a\ge1\\a\le-3\end{matrix}\right.\)

2) Để biểu thức có nghĩa thì \(\left\{{}\begin{matrix}a-1\ge0\\a\ne0\end{matrix}\right.\Leftrightarrow a\ge1\)

3) Để biểu thức có nghĩa thì \(a>0\)

4) Để biểu thức có nghĩa thì \(\left\{{}\begin{matrix}a\ne-\dfrac{1}{2}\\\left[{}\begin{matrix}a-1\ge0\\2a+1< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a\ne-\dfrac{1}{2}\\\left[{}\begin{matrix}a\ge1\\a< -\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a\ge1\\a< -\dfrac{1}{2}\end{matrix}\right.\)

Bình luận (0)
AT
6 tháng 7 2021 lúc 20:16

1) Để biểu thức có nghĩa  \(\Rightarrow a^2+2a-3\ge0\Rightarrow\left(a-1\right)\left(a+3\right)\ge0\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a-1\ge0\\a+3\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}a-1\le0\\a+3\le0\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}a\ge1\\a\le-3\end{matrix}\right.\)

2) Để biểu thức có nghĩa \(\Rightarrow\dfrac{\left(a-1\right)^3}{a^2}\ge0\Rightarrow\left\{{}\begin{matrix}\left(a-1\right)^3\ge0\\a\ne0\end{matrix}\right.\Rightarrow a\ge1\)

3) Để biểu thức có nghĩa \(\Rightarrow\dfrac{a^2+1}{2a}\ge0\Rightarrow2a>0\Rightarrow a>0\)

4) Để biểu thức có nghĩa \(\Rightarrow\dfrac{a-1}{2a+1}\ge0\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a-1\ge0\\2a+1>0\end{matrix}\right.\\\left\{{}\begin{matrix}a-1\le0\\2a+1< 0\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}a\ge1\\a< -\dfrac{1}{2}\end{matrix}\right.\)

Bình luận (0)
H24
Xem chi tiết
NM
17 tháng 11 2021 lúc 20:42

\(1,\\ A=1+\left[\dfrac{\left(2\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}-\dfrac{\sqrt{a}\left(2\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\left(1-\sqrt{a}\right)\left(a+\sqrt{a}+1\right)}\right]\cdot\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\\ A=1+\left[\dfrac{2\sqrt{a}-1}{1-\sqrt{a}}-\dfrac{\sqrt{a}\left(2\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\left(1-\sqrt{a}\right)\left(a+\sqrt{a}+1\right)}\right]\cdot\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\\ A=1+\dfrac{\left(2\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)-\left(2\sqrt{a}-1\right)\left(a+\sqrt{a}\right)}{\left(1-\sqrt{a}\right)\left(a+\sqrt{a}+1\right)}\cdot\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\)

\(A=1+\dfrac{\left(2\sqrt{a}-1\right)\left(a+\sqrt{a}+1-a-\sqrt{a}\right)}{-\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}\cdot\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\\ A=1+\dfrac{-\sqrt{a}\left(2\sqrt{a}-1\right)}{\left(a+\sqrt{a}+1\right)\left(2\sqrt{a}-1\right)}\\ A=1-\dfrac{\sqrt{a}}{a+\sqrt{a}+1}=\dfrac{a+\sqrt{a}+1-\sqrt{a}}{a+\sqrt{a}+1}=\dfrac{a+1}{a+\sqrt{a}+1}\)

Bình luận (1)
NM
17 tháng 11 2021 lúc 20:57

2.

Vì 2 đt cắt tại điểm có tung độ -3

\(\Leftrightarrow y=-3\Leftrightarrow\left\{{}\begin{matrix}\left(2-3m\right)x+m^2+1=-3\\x-2=-3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}3m-2+m^2+1+3=0\\x=-1\end{matrix}\right.\\ \Leftrightarrow m^2+3m+2=0\\ \Leftrightarrow\left[{}\begin{matrix}m=-1\\m=-2\end{matrix}\right.\)

Bình luận (0)
NT
Xem chi tiết
ND
Xem chi tiết
NT
21 tháng 6 2023 lúc 22:18

1: =(8+a^3)(8-a^3)=64-a^6

2: =x^3-6x^2+12x-8-x(x^2-1)+6x^2-18x

=x^3-6x-8-x^3+x

=-5x-8

3: =x^3+3x^2+3x+1-x^3+1-3x^2-3x

=2

Bình luận (0)
NB
Xem chi tiết
DD
Xem chi tiết
H24
10 tháng 12 2019 lúc 12:59

1111111

Bình luận (0)
 Khách vãng lai đã xóa