C = \(\frac{1}{15}\) + \(\frac{1}{35}\)+ ...... + \(\frac{1}{2499}\)
tính
\(C=\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+.........+\frac{1}{2499}\)
C=1/15+1/35+1/63+..+1/2499
=1/3.5+1/5.7+1/7.9+...+1/49.51
=1/2(2/3.5+2/5.7+2/7.9+...+2/49.51)
=1/2(1/3-1/5+1/5-1/7+1/7-1/9+...+1/49-1/51)
= 1/2.(1/3-1/51)
=1/2.16/51
=8/51
tính nhanh:
C=\(\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+........+\frac{1}{2499}\)
\(C=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+.....+\frac{1}{49.51}\)
\(C=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{49}-\frac{1}{51}\right)\)
\(C=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{51}\right)\)
\(C=\frac{1}{2}.\frac{16}{51}=\frac{8}{51}\)
\(C=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{51}\right)\)
\(C=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{51}\right)=\frac{8}{51}\)
C=\(\frac{1}{3.5}\)+\(\frac{1}{5.7}\)+\(\frac{1}{7.9}\)+......+\(\frac{1}{49.51}\)
C=(\(\frac{2}{3.5}\)+\(\frac{2}{5.7}\)+\(\frac{2}{7.9}\)+.......+\(\frac{2}{49.51}\)) :2
C=(\(\frac{1}{3}\)-\(\frac{1}{5}\)+\(\frac{1}{5}\)-\(\frac{1}{7}\)+\(\frac{1}{7}\)-\(\frac{1}{9}\)+....+\(\frac{1}{49}\)-\(\frac{1}{51}\)) :2
C=(\(\frac{1}{3}\)-\(\frac{1}{51}\)) :2
C=\(\frac{16}{51}\):2=\(\frac{8}{51}\)
\(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{2499}=?\)
Ta có :
\(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{2499}\)
\(=\)\(\frac{1}{2}\left(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+...+\frac{2}{2499}\right)\) ( bước này hơi khó hiểu tí nhé )
\(=\)\(\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\right)\) ( phân tích mẫu )
\(=\)\(\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\) ( áp dụng công thức thoi )
\(=\)\(\frac{1}{2}\left(1-\frac{1}{51}\right)\) ( loại bỏ nhưng phân số đối nhau )
\(=\)\(\frac{1}{2}.\frac{50}{51}\)
\(=\)\(\frac{25}{51}\)
Chúc bạn học tốt ~
ĐẶT \(A\)\(=\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{49\cdot51}\)
\(2.A=\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{49\cdot51}\)
\(2.A=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\)
\(2.A=1-\frac{1}{51}\)
\(2.A=\frac{50}{51}\)
\(\Rightarrow A=\frac{50}{51}\div2=\frac{25}{51}\)
Chứng Minh Rằng:
C = \(\frac{1}{15}+\frac{1}{35}+...+\frac{1}{2499}\)
D = \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{10^2}< 1\)
Câu \(C=\left(...\right)\) thiếu đề
Ta có :
\(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
\(............\)
\(\frac{1}{10^2}< \frac{1}{9.10}\)
\(\Rightarrow\)\(D=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{10^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{9.10}\)
\(\Rightarrow\)\(D< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\)
\(\Rightarrow\)\(D< 1-\frac{1}{10}< 1\)
\(\Rightarrow\)\(D< 1\) ( đpcm )
Vậy \(D< 1\)
Chúc bạn học tốt ~
\(C=\frac{1}{15}+\frac{1}{35}+....+\frac{1}{2499}\)
\(C=\frac{1}{3.5}+\frac{1}{5.7}+........+\frac{1}{49.51}\)
\(C=\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{2}{49.51}\right)\)
\(C=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+......+\frac{1}{49}-\frac{1}{51}\right)\)
\(C=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{51}\right)\)
\(C=\frac{1}{2}.\frac{16}{51}\)
\(C=\frac{8}{51}\)
\(D=\frac{1}{2^2}+\frac{1}{3^2}+......+\frac{1}{10^2}\)
ta có :
\(\frac{1}{2^2}=\frac{1}{2.2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}=\frac{1}{3.3}< \frac{1}{2.3}\)
\(....................\)
\(\frac{1}{10^2}=\frac{1}{10.10}< \frac{1}{9.10}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+......+\frac{1}{10^2}< \frac{1}{1.2}+\frac{1}{2.3}+........+\frac{1}{9.10}\)
\(\Rightarrow D< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+........+\frac{1}{9}-\frac{1}{10}\)
\(\Rightarrow D< 1-\frac{1}{10}\)
\(\Rightarrow D< \frac{9}{10}\) ( 1 )
mà \(\frac{9}{10}< 1\) ( 2 )
từ ( 1 ) và ( 2 ) \(\Rightarrow D< 1\left(\text{đ}pcm\right)\)
C = \(\frac{1}{15}\) + \(\frac{1}{35}\)+ . . . + \(\frac{1}{2499}\)
\(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}=\frac{1}{2}.(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51})\)
\(=\frac{1}{3}-\frac{1}{51}=\frac{16}{51}\)
\(C=\frac{1}{15}+\frac{1}{35}+...+\frac{1}{2499}\)
\(C=\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}\)
\(C=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\)
\(C=\frac{1}{3}-\frac{1}{51}\)
\(C=\frac{16}{51}\)
\(C=\frac{1}{15}+\frac{1}{35}+......+\frac{1}{2499}\)
\(C=\frac{1}{3.5}+\frac{1}{5.7}+......+\frac{1}{49.51}\)
\(C=\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+........+\frac{2}{49.51}\right)\)
\(C=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+........+\frac{1}{49}-\frac{1}{51}\right)\)
\(C=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{51}\right)\)
\(C=\frac{1}{2}.\frac{16}{51}\)
\(C=\frac{8}{51}\)
Tính:
a) \(\frac{5}{1.4}+\frac{5}{4.7}+...+\frac{5}{100.103}\)
b) \(\frac{1}{15}+\frac{1}{35}+...+\frac{1}{2499}\)
a)\(\frac{5}{1.4}+\frac{5}{4.7}+...+\frac{5}{100.103}=\frac{5}{3}\cdot\left(\frac{3}{1.4}+\frac{4}{4.7}+...+\frac{3}{100.103}\right)\)
\(=\frac{5}{3}\cdot\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\right)=\frac{5}{3}\cdot\left(1-\frac{1}{103}\right)=\frac{5}{3}\cdot\frac{102}{103}=\frac{170}{103}\)b)\(\frac{1}{15}+\frac{1}{35}+...+\frac{1}{2499}=\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}\)
\(\frac{1}{2}\cdot\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)=\frac{1}{2}\cdot\left(\frac{1}{3}-\frac{1}{51}\right)=\frac{1}{2}\cdot\frac{16}{51}=\frac{8}{51}\)
Câu a) bạn Ác Mộng làm rồi nên mình làm b) nha
b)Gọi A = \(\frac{1}{15}+\frac{1}{35}+...+\frac{1}{2499}\)
\(A=\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}\)
\(2A=2.\left(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}\right)\)
\(2A=\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\)
\(2A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\)
\(2A=\frac{1}{3}-\frac{1}{51}\)
\(2A=\frac{16}{51}\)
\(A=\frac{16}{51}:2\)
\(A=\frac{8}{51}\)
5*(5-5/4+5/4-5/7+.......+5/100-5/103)
5*(5-5/103)
5*......... bạn tự tính nhé
câu b 1/3*5+1/5*7+............+1/49*51
1*(1/1-1/3+1/3-1/5+............+1/49-1/51)
1/1-1/51 tính ra rồi ra kết quả
tk nha
Tính nhanh hợp lí:
a)\(A=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{600}\)
b)\(B=\frac{-5}{3}+\frac{-5}{15}+\frac{-5}{35}+...+\frac{-5}{2499}\)
chứng minh rằng :
a) \(\frac{a}{n\left(n+a\right)}=\frac{1}{n}-\frac{1}{n+a}\) ( n , a ϵ N* )
b) áp dụng câu a tính ;
\(A=\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(B=\frac{5}{1.4}+\frac{5}{4.7}+...+\frac{5}{100.103}\)
\(C=\frac{1}{15}+\frac{1}{35}+...+\frac{1}{2499}\)
a) \(\frac{1}{n}-\frac{1}{n+a}=\frac{\left(n+a\right)-n}{n\left(n+a\right)}=\frac{a}{a\left(n+a\right)}\) (đpcm)
b) \(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)
\(B=\frac{5}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\right)=\frac{5}{3}.\left(1-\frac{1}{103}\right)=\frac{5}{3}.\frac{102}{103}=\frac{170}{103}\)
\(C=\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}=\frac{1}{3}-\frac{1}{51}=\frac{16}{51}\)
Tính tổng:
A= \(\frac{1}{15}\)+\(\frac{1}{35}\)+...+\(\frac{1}{2499}\)
B=\(\frac{5}{1x4}\)+\(\frac{5}{4x7}\)+...+\(\frac{5}{100x103}\)
C=\(\frac{5}{1x3}\)+\(\frac{5}{3x5}\)+\(\frac{5}{5x7}\)+...+\(\frac{5}{99x101}\)
\(A=\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{49\cdot51}\)
\(\Rightarrow A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\)
\(\Rightarrow A=\frac{1}{3}-\frac{1}{51}=\frac{17}{51}-\frac{1}{51}=\frac{16}{51}\)
\(B=5\cdot\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-...+\frac{1}{100}-\frac{1}{103}\right)\)
\(\Rightarrow B=5\cdot\left(1-\frac{1}{103}\right)=5\cdot\frac{102}{103}=\frac{510}{103}\)
\(C=5\cdot\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{101}\right)\)
\(\Rightarrow C=5\cdot\left(1-\frac{1}{101}\right)=5\cdot\frac{100}{101}=\frac{500}{101}\)
\(B=\frac{5}{1.4}+\frac{5}{4.7}+...+\frac{5}{100.103}\)
\(B=\frac{5}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{100.103}\right)\)
\(B=\frac{5}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\right)\)
\(B=\frac{5}{3}\left(1-\frac{1}{103}\right)\)
\(B=\frac{5}{3}.\frac{102}{103}=\frac{170}{103}\)
\(C=\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{99.101}\)
\(C=\frac{5}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\right)\)
\(C=\frac{5}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(C=\frac{5}{2}\left(1-\frac{1}{101}\right)\)
\(C=\frac{5}{2}.\frac{100}{101}=\frac{250}{101}\)
\(A=\frac{1}{15}+\frac{1}{35}+...+\frac{1}{2499}\)
\(A=\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}\)
\(A=\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\right)\)
\(A=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)
\(A=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{51}\right)=\frac{1}{2}.\frac{16}{51}=\frac{8}{51}\)
# Học tốt #