Trả lời
\(C=\frac{1}{15}+\frac{1}{35}+...+\frac{1}{2499}\)
\(\Rightarrow C=\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{...1}{49\cdot51}\)
\(\Rightarrow2C=2\left(\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{49\cdot51}\right)\)
\(\Rightarrow2C=\frac{2}{1\cdot3}+\frac{2}{5\cdot7}+...+\frac{2}{49\cdot51}\)
\(\Rightarrow2C=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\)
\(\Rightarrow2C=1-\frac{1}{51}\)
\(\Rightarrow2C=\frac{50}{51}\)
\(\Rightarrow C=\frac{50}{51}:2\)
\(\Rightarrow C=\frac{25}{51}\)
Vậy \(C=\frac{25}{51}\)
\(C=\frac{1}{15}+\frac{1}{35}+...+\frac{1}{2499}\)
\(=\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{50}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{50}\right)\)\(=\frac{1}{2}.\frac{47}{150}\)
\(=\frac{47}{300}\)\(\Rightarrow C=\frac{47}{300}\)
ღღღღღღღღღღღღღღღღღღღღღღღღღღღღღღღღღღღღღღღღ